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)
ABSTRACT )
The ability to conduct research in the robotic ficld in new areas can be accomplished safely and
efficiently using computer graphic simulation. Object-oriented languages provide a powerful and
flexible capability in defining rigid body manipulators that can be adapted in the use and design of )
many types of systems. The very nature of object-oriented programming permits modification and
improvement of the code with ease.
This thesis examines the major capabilities of object-oriented programming in conjunction with ’
kinematics equations that simulate a six-legged walking robot. A comparison is conducted between
programs using CLOS (LISP) and C++ to graphically simulate the Aquarobot - an existing
b
undJei water walking robot. It is found that both languages are effective, but CLOS programming is
easier while C+ + code executes more than twice as fast as compiled CLOS. f
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I. INTRODUCTION

A. GOALS

The goal of this thesis is to investigate a method for
producing a graphic simulation of a walking robot constructed
from serial manipulators acting as legs. The main intent is
to compare object-oriented code that is based on kinematics
using two programming languages, CLOS and C++. This thesis
discusses and provides examples of steps necessary for the
evolution of a first stage graphic simulator of a walking
robot. The walking robot in guestion is a six-legged
underwater vehicle, called "Aquarobot", that is presently
under development in Japan for use in subsea construction and

inspection tasks.

B. ORGANIZATION

Chapter II of this thesis reviews previous work in the
area of walking robots. Chapter III provides a detailed
description of Aquarobot, the subject of the simulator
developed in this research. Chapter IV provides an overview
of kinematics modelling of articulated rigid bodies, and
methods used to calculate link parameters for such systems.

The last part of this chapter provides the specific kinematic

parameters for Aquarobot.




Chapter V is a review of object-oriented programming and
includes a discussion of its advantages and disadvantages.
Chapter VI contains the history and a description of some
common object-oriented languages. Chapter VII provides a
description of the Aquarobot simulation programs written in
the CLOS and C++ languages. This chapter compares the methods
each lanquage requires to define classes and create objects.
A comparison of the performance of the C++ and CLOS
simulations is provided in Chapter VIII.

The last chapter, Chapter IX, presents some conclusions
about the work described. This is followed by recommendations
for possible future use of Aquarobot, the characteristics of

the two simulations created, and suggestions for further

Yy 2search.




II. BURVEY OF PREVIOUS WORK

A. INTRODUCTION

Man’s need *° comprehend the human body and the phenomena
around him motivates him to imitate it as a tool of
understanding. This chapter provides a historical review of
robotic advancements in 1living animal imitation. It
specifically addresses the evolution of legged robots. The
differences between legged and wheeled 1l-comotion are also

discussed.

B. HISBSTORICAL IMITATION OF LIVING CREATURES

Historically, research has attempted to build machines
that imitate animals. Through technology, it is hoped to
achieve a better understanding of humans and animals and to
accomplish these creature’s taskXs with robots. Some such
research is driven by a desire to provide the disabled with
alternative compensation methods, such as artificial limbs,
and other means of achieving increased mobility (McGhee,
1977). Mobility goals for legged vehicles include moving
faster or for extended times, or operating in adverse
environments and conditions such as moving under water, and in
space flight applications.

Biological systems, often taken for granted, are extremely

difficult to emulate or even define. One example, the




imitation of a walking gait of an animal, is not easy due to
the difficulty of emulating the nervous system and the natural
materials that form the animal. These unknown variables have
impeded our success in obtaining the coordination algorithms
of even simple animals (McGhee, 1985). A human takes
approximately one year to learn how to walk yet, after decades
of research, walking machines are still considered to be in
the "infant" stage.

Animal limb imitation has been an area of great interest
to researchers interested in advancad mobility systems. If an
application for a walking vehicle is known, there are rany
variables that must be considered to determine an animal to
imitate. As an example, one variable is compliance (Anon,
1987). Compliance is defined as "the act of conforming,
acquiescing, or yielding" (Stein, 1979). As the degree of
compliance of a design is improved, the machine becomes more
challenging to control and keep the limb steady, yet it will
be more robust (e.g., able to withstand impact). If the
degree of compliance in a design is reduced, then the ability
to accurately position the limb will be enhanced, but it will
tend to be rigid and unyielding. On the other hand,
compliance permits flexibility which is beneficial when
performing simple but complex actions such as attempting to
place a bolt on a screw (Anon, 1987).

Limb imitation designs have varied drastically in

appearance. For access to tight spaces, snake-like devices




have been constructed. Their applications require that

compliance be 1limited in order to maintain position. In
contrast, a limb similar to an elephant’s trunk has been used
as a device to lift objects of varied shapes. This device did
not have an internal support structure. Instead, it copied the
multiple layers of muscle in an elephant’s trunk which
provides motion control. It was extremely compliant in order
to accommodate the varied shapes that grasped objects require
(Anon, 1987). Human hands have been imitated in numerous
designs. Additionally, legs are very popular in robot
research.

Legged locomotion requires a successful leg design.
Through evolution, animals have perfected their individual
legged locomotion characteristics based on their specialized
needs. Legged animals are capable of high speeds and
intricate motion even when the animal is large and heavy.
Animal legs have been put into two categories: "mammal" and
"insect" types (Iwasaki, 1987). The "mammal" type has legs
which are always vertical like a horse. The "insect" type has
bent legs 1like a beetle. A walking capability able to
function in natural terrain requires complicated sensors, a
nervous system, and artificial intelligence (e.g., a reasoning
ability). Since exact imitation of these intricate animal
systems has not, at present, been achieved, legged vehicle
designers must choose other mean.: to solve this coordination

control problem (McGhee, 1985).



C. HISBTORY G/ WALKING ROBOTS

The original legged machines evolved from earth moving and
construction vehicles. These devices are known as "climbing
hoes"™ (McGhee, 1985). From 1965 to 1968, a four-legged
vehicle, called the "Quadruped Transporter", was constructed
by General Electric. This vehicle incorporated a human
operator in order to provide the sensing and neural control
functions discussed earlier. The operator of this vehicle was
provided with one leg control lever for each limb. These
levers were attached to the arms and legs of the human
operator so that he could control the legs by executing the
desired motions with his own limbs. The front legs were
controlled by the operator’s hands and the rear legs were
controlled by the operator’s feet. Each control lever had
three degrees of freedom: two at the hip and one at the knee.
This coordination control system required a high level of
operator skill, and only a few mastered its intricacies.
Moreover, these operators could only walk the vehicle for a
short time due to the complicated multi-degree of freedom
coordination problem (McGhee, 1985).

The Quadruped Transporter was designed as a research
vehicle and opened the field of vehicular legged locomotion.

A hydraulic servo system moved the legs. It successfully

walked and displayed impressive obstacle climbing ability.




However, the complexity of the operator motion coordination
task severely limited the device’s capabilities (McGhee,
1985).

In 1977, a different control method was incorporated into
another robot called the Ohio State University (0OSU) Hexapod
Vehicle. This robot used supervisory control (Ferrell, 1967)
in which the operator controlled speed and direction, and a
computer coordinated the actual leg motion (Pugh, 1982). The
OSU Hexapod Vehicle was a six-legged vehicle with insect type
legs (McGhee, 1985). The device was constructed to study and
develop gait algorithms. Each leg had three degrees of
freedom, each consisting of two links connected by a joint.
Each joint had an electric motor and a worm gear (Waldron,
1989). The operator controlled the vehicle with a remote
joystick in an indoor laboratory setting.

The successor to the 0SU Hexapod Vehicle was completed in
1986 at OSU. It was called the "Adaptive Suspension Vehicle"
(ASV) (Waldron, 1986). The ASV was designed for sustained
outdoor locomotion on uneven and unmapped terrain. This six-
legged robot was the first robot to control its legs by an on-
board computer and to carry its own power source in the form
of an internal combustion engine (Waldron, 1986). The ASV,
like the Quadruped Transformer, includes an onboard human
operator. However, the ASV does not require manual

coordination of limb motion by the operator (Waldron, 1986).

In order for the ASV to operate in unstructured terrain, it




incorporates extensive sensor devices including a laser
terrain scanner to provide a three dimensional terrain
elevation map for a distance of ten meters in front of the
vehicle. This information is used for automatic selection of
footholds in rough terrain (Waldron, 1986).

To date, legged vehicles have had limited application
success. This is due to the complex leg coordination control
problem and a 1limited understanding of necessary gait
algorithms. Also, this situation exists because of limited
advances in leg design. Future improvements in agility and
speed are anticipated with further progress in understanding
of the difficult problem of microcomputer coordination of

joint motion (McGhee, 1985).

D. ADVANTAGES OF LEGGED ROBOTS

Legged locomotion has existed for hundreds of millions of
vyears while wheeled locomotion, an invention of man, has been
around for only several thousand years (Waldron, 1989). It is
interesting that evolution has not produced wheeled biological
systems, but then there were no smooth, graded roads before
the introduction of wheels. Still, given the elegant results
of evolution, one might conclude 1legged locomotion is
inherently superior to wheeled locomotion, at least in natural
terrain.

Currently, it is possible to go close to most places of

interest on the land surface of the earth by traveling on




roads. This has greatly altered our environment. Still, it
takes an off-road wheeled or tracked vehicle to reach the
areas in between, and they leave ugly ruts in the soil. If
the off-road vehicle were to be a legged vehicle, it would
leave only discrete footprints. Furthermore, over half the
Earth’s land surface (largely, unpopulated areas) is entirely
inaccessible to wheeled vehicles (Waldron, 1989) but not to
legged vehicles. Legged vehicles have the potential to walk
underwater and in surf as well.

Legged locomotion has an advantage over wheeled locomotion
when soft ground or slippery surfaces are involved. Wheeled
vehicles sink into the ground and must roll out of the
resulting depression by relying on shearing forces resulting
from friction between wheels and the ground. Legs also sink
into the ground but can be lifted vertically (Bekker, 1969) -
a maneuver that doesn’t impede locomotion.

While wheeled vehicles have proven themselves efficient
for long-distance transportation, the path must be relatively
smooth and firm. The performance of large mammals shows that
it is possible for legged locomotion to also be efficient for
long-distance transportation. However, actively coordinated
leg motions must be defined by algorithms. These algorithms
are presently in an early stage of development (Waldron,
1989) .

Legged vehicles may eventually be able to compete with

wheeled locomotion in all respects except possibly speed.




However, additional technological advances in theory and
materials will be needed before such machines can reach their
full potential. The advances in computers in the late 1980’s
~ enabled researchers to provide for the leg coordination
computations on board a walking vehicle, but researchers are
moving slowly in their attempts to provide sufficiently
powerful computation algorithms (HcGheé, 1985). Over adverse
terrain, legged vehicles have the potential to provide higher
speed, greater mobility, and 1less environmental damage.
Additionally, legged vehicles can provide more comfort for a
human rider. The rough ride wheeled provided by locomotion
over rough terrain is detrimental to instruments and cargo on
board. In contrast, legged vehicles do not vibrate when
travelling over rough terrain (Waldron, 1989). Finally,
several studies have shown that legged vehicles have the
potential to provide improved fuel economy in comparison with

wheeled vehicles of comparable size (McGhee, 1986).

E. SUMMARY

This chapter provides a survey of previous work relating
to and walking machines. It specifically discusses the
history of legged vehicle technology and provides walking

machine examples. Legged and wheeled locomotion are compared

and their specific advantages are discussed. The next chapter




discusses a walking robot, Aquarobot, that is currently under
development in Japan, and which provides the focus of this

thesis.

11

{‘.Al

e M

(Ao



IXI. AQUAROBOT

A. INTRODUCTION

One of Japan’s most important resources is its land.
Unfortunately, Japanese tidal waves (tsunamis), constantly
threaten the Japanese coast and erode productive ground.
Granite rock mound foundations are currently being laid for a
tsunami seawall to be installed in Kamaishi Bay in the
northern part of Honshu. This seawall is designed to
dissipate the energy of a tsunami prior to its arrival at
shore. The Port and Harbour Research Institute (PHRI) of the
Ministry of Transportation in Yokosuka, Japan, wishes to
develop a general method to accomplish deep water structural
ingpection of seawalls, including the Kamaishi project. This
method should also provide supervision of construction and
guality control, and should not involve the use of human
divers (Akizono, 1989).

Unfortunately, there is not an "optimal" device to
accomplish the task that PHRI requires. PHRI is currently
using human divers to measure wall and foundation variations.
This 1is a difficult process due to the pressurization
requirements of the human body and the short time that divers
can be at the bottom (about one hour per day at a depth of

sixty meters). Additionally, the deep sea diver occupation is
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physically taxing and it is difficult to recruit new
personnel. At this time, most of Japan’s deep sea divers are
in their late 30’s or older (Takahashi, 1993). Human divers
are very capable when at the depth of the wall, but are slow
and expensive.

Using a robot is one obvious alternative. There are two
basic options in the design of such a robot. First, a
floating Remotely Operated Vehicle (ROV) could be used.
However, floating vehicles have difficulty maintaining a
stationary position while keeping a specified heading in
water. A floating vehicle has a poor ability to accurately
measure objects since the vehicle is not stable. This would
make a floating robot a poor choice for the PHRI measurement
needs. However, a floating vehicle is an excellent choice for
camera inspection because it can move a TV camera to all
viewing aspects. Unfortunately, if the sea floor is muddy, a
floating robot may make the water murky due to turbulence
induced by its thrusters used for maneuvering (Robison, 1992).

Another robot type available is the walking robot. It
provides stability in a stationary position. It can provide
the measurements PHRI desires. However, there will be
limitations on the camera angles dependent upon the degrees of
freedom of the camera arm and the arm placement. A walking
robot does not muddy the water because it does not stir up a
soft sea floor. Of the two general types of walking robots,

"mammal® and "insect", the insect type provides better

13




movement on uneven terrain (Waldron, 1989). Agquarobot is an

insect type walking robot.

B. AQUAROBOT HISTORY

PHRI bas designed three robots in an attempt to produce
the first practical underwater walking robot. These robots
have been labeled "Aquarobot" by their creator, PHRI (Akizono,
1989). They are all six-legged articulated robots.

The first, an experimental model, was designed in 1985.
It was not watertight and was designed to run ground tests for
basic research and as a software debugger.

The second Aquarobot, the prototype model, was designed
for underwater sea floor applications. The third Aquarobot
was designed as a lightweight design of the prototype model.
It is the second prototype model which has been modeled in

this thesis (Akizono, 1989).

C. DESBCRIPTION

The prototype Aquarobot is a walking ROV designed to
follow a path determined from navigation beacons using a gait
algorithm computed by a control station on a barge on the
surface, and passed to the robot via a tether. It is a six-
legged articulated "insect type" robot equipped with one arm
used to move and aim a video camera (Akizcono, 1989).

The aquarobot consists of a hexagonal body and six legs.

The body is constructed of anti-corrosive aluminum. Each leg

14




has three rotary joints that provide three degrees of freedom.
Additionally, each leg has a disc-shaped foot pad that is
attached to the leg with a freely rotating ball joint. The
foot pads are not position controlled, but are oriented by a
combination of gravity, the terrain surface, and hydrodynamic
effects acting on the ball joint connection. Figure 2.1

depicts the Aquarobot and its leg structure.

Figure 3.1

Photograph of Aquarcbot

Each leg joint of Aquarobot is controlled by the computer
via a DC motor that drives a reduction gear. The reduction
gear consists of a harmonic gear and a pair of beveled gears.
This drive method is known as a gsemi-direct drive mechanism
(Akizono, 1989). These motors and gears are located within

the legs.




Each of the eighteen motors are driven by DC power. There
is one motor driver per motor, each located on the barge
controlling Aquarobot. The motor driver sends the motor a
voltage computed from pulse information it receives.
Specifically, the motor driver contains a pulse counter which
counts up for pulses received from the computer and counts
down when pulses are received from encoded motor output
feedback. The motor driver provides the necessary voltage to
the motor to drive the counter toward zero. Thus, the
motor/driver system uses a simple position feedback method.
(Akizono, 1989)

There are two inclinometers and one gyrocompass (Anon,
1992) on the body of Aquarobot. Each foot has a pressure
sensitive touch sensor. These sensors provide foot contact
and body orientation information to the computer (Akizono,
1989). To measure the absolute elevation of selected points
on a rock mound foundation, one leg of Aquarobot is also
furnished with an accurate depth cell located just above the
foot (Takahashi, 1993).

The computer system, located on the barge, provides
walking algorithms and operating programs. It is a 16-bit
controller. The interface is provided by two integrated
circuit boards: an input/output board and an A/D converter
board. The input/output board sends pulses to the motor
driver and receives touch sensor status and joint rotation

pulses from the legs. The A/D converter receives the
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gyrocompass, depth cell, and inclination sensor feedback.
Individual leg motions thus are performed using hardware
controls, while top level motion control and path planning is
controlled by software. (Akizono, 1989)

The information bus has changed throughout Aquarobot’s
evolution. The tether for the experimental model consisted of
copper wire. The two later models have optical fiber links
with optical/electric converters in the body and control unit.
However, all models contain eighteen copper wires to carry
current to individual motors, resulting in a rather large
cable cross section (four centimeters). (Iwasaki, 1987)

The computer software is currently written in BASIC. The
operating program receives the walking commands from the gait
algorithm and simultaneously translates them to the motor
drivers in pulse form.

The prototype model’s video camera arm has three rotary
joints. Cameras may also have independent pan and tilt
controcl. The arm is also equipped with an ultrasonic ranging
device. Using this device, scales can be projected on the
camera screen so that measurements of an object can be
interpreted in conjunction with its range from Aquarobot to
determine actual dimensions.

The prototype model also has a relative navigation

capability which uses a transponder system. This system
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measures its position in cartesian coordinates, based upon
triangulation of signals received from beacons placed in the

vicinity of Aquarobot at known locations. (Akizono, 1989)

D. CURRENT USE IN JAPAN

The prototype Aquarobot |has successfully walked
underwater. It’s current maximum walking speed on uneven sea
bed is approximately one meter per minute. While this speed
is judged to be acceptable, Aquarobot has not been put to
practical use because human divers are still able to perform

its function at a lower cost. (Takahashi, 1993)

E. POSSIBLE AQUAROBOT IMPROVEMENTS

Aquarobot could be improved in many ways. The physical
characteristics of the tether and the resultant effects of
currents on it is an area where substantial improvements are
possible. The tether could be decreased from its currently
large circumference and bulky appearance. This could be done
by improving the motor controllers and placing them in the
vehicle. In this way, the eighteen wires in the cable
carrying motor currents could be replaced by a single two
conductor power cable. Additionally, the computer software
could be optimized to provide faster and more flexible code.
New technology in integrated circuits should be incorporated

to generally decrease component size and power requirements.
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¥. SUMMARY

Aquarobot represents a major advancement in the field of
walking robots. Aquarobot’s design was influenced by the
mission it was to accomplish. This is not often the case in
robot design. Usually, a robot is designed from a research
standpoint and then may be used in a "real life" application.
When an application is driving the technology, robotics
advancement looks at the problem from a new perspective and
new and variecd designs can be anticipated. The algorithms

required to calculate the leg and body positions of Aquarobot

are described in the next chapter of this thesis.




IV. KINENATICS MODEL

A. INTRODUCTION

Robots typically consist of one or more "limbs" which are
technically defined as mechanical manipulators. These
manipulators provide the robot with the capability to grasp,
walk, or perform some other task. To control the robot
appendages with commands to move to a desired location,
knowledge from the field of physics and engineering that
describes motion of rigid bodies is needed. This field is
known as kinematics. Kinematics is "... the science of motion
which treats motion without regard to the forces which cause
it" (Craig, 1989, p.6). Kinematics allow all geometric
properties of the motion to be defined.

Forward kinematics computes the Cartesian space position
and orientation of the manipulator 1links from a set of
parameters which describe the manipulator using angles and
lengths. The orientation is often described as azimuth, roll,
and elevation. Inverse kinematics solves for the manipulator

parameters when the Cartesian space and orientation are known.

B. LINKAGE AND COMPONENT DESCRIPTION
Manipulators consist of nearly rigid 1links which are
connected at joints. There are two simple types of joints:

sliding (prismatic) and rotary. The joints are designated by
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number beginning from the base, usually labeled joint 0
(Craig, 1989). The base is also sometimes considered to be the
most inboard link. The free end of the links is the most
outboard link and is often called the end-effector. It is at
the end-effector that the robot’s work is performed. Often the
end-effector is a grasping device or a foot pad.

Kinematics considers each link to be a purely rigid body
(Craig, 1989). 1In reality, description of a manipulator’s
links requires many variables to be considered during the
design process. Some variables include the material used for
construction, the link strength, stiffness, length, and the
manipulator weight.

Kinematic algorithms are designed to define the position
and orientation of all manipulators regardless of their
geometric complexity. This is accomplished by carefully
defining joint coordinate axes called frames and arranging
their alignments using standard parameters that describe the

adjacent link relationships (Craig, 1989).

C. KINEMATICS8 PARAMETER DEFINITIONS

A frame is attached to each joint with the Z-axis
coincident with the joint motion axis. The X-axis of the
frame is directed from a link’s inboard joint towards its
outboard joint to intersect that joint’s axis, and is mutually

perpendicular to both Z-axes.
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Four parameters are needed in the kinematic algorithms.
The first, link length, is the distance along the X-axis
between the joints of a given link. The second is link twist.
This is the angle necessary to rotate the inboard 2Z-axis to be
parallel to the outboard Z-axis.

The third parameter is link offset. It is the distance
measured at the inboard link axis from the preceding link X-
axis to the current X-axis. The final parameter is the
rotation at this joint from the previous link X-axis to the

current link X-axis. This is known as the joint angle.

D. CRAIG VERSUS DANEVIT-HARTENBERG METHOD COMPARISON

Forward kinematics determines the cumulative effect of
joint motions on the entire 1link chain. This cumulative
effect can be accomplished by a number of methods. Two common
methods, Craig and Danevit-Hartenberg, are related in their
approach but differ in their setup (Spong, 1989).

To begin with, the manipulator must be inspected. The
frames must be placed with the proper orientation. The four
parameters discussed above must then be determined. These
parameters are identical for both methods; however, the
numbering of the joint frames varies.

The Craig method numbers the links beginning with zero at
the most inboard link. The base joint is numbered joint 0.

This produces a numbering system where the link and the link’s

inboard joint have the same index number (Craig, 1989). An




example of this notation is pictured in Figure 4.1. The base
(joint 0) inboard link length and inboard link twist are both

defined as zero.

Joint i-1

Zia

Figure 4.1

Craig Method Frame and Parameter Assignment
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The Danevit-Hartenberg (DH) notation differs from the
other method. In this method, the first link, attached to the
base joint, is labeled 1link 1. The base joint is labeled
joint 0. This produces a numbering system along the 1link
chain in which the link and the link’s outboard joint have the
same index number (Spong, 1989). An example of this method is

pictured in Figure 4.2.

Figure 4.2

Danevit-Hartenberg Frame and Parameter Assignment
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These methods use related conventions for manipulating
these parameters; however, the algorithms are different. The (]

cumulative effect of the links are defined within a matrix

known as the transformation matrix (Craig, 1989). The
transformation matrix differs for the two methods addressed. »

The Craig method uses a transformation matrix (known as
the T matrix) to define the outboard joint location on a link
relative to the inboard joint. The T matrix is defined as )

(Craig, 1989, p.84):

o, -8, 0 L .
&, o, 0 co, -s0,, -50,,4
1-1 (4.1) 3
T = #, s, B s, co, 0,4
' 0 0 0 1
)
vhere c = cos (4.2)
8 = gin (4.3)




The subscript of the T matrix label describes which joint is ‘
being defined. The superscript of the T matrix describes the
link to which the matrix is referenced.
The Danevit-Hartenberg method uses a transformation matrix
(known as the A matrix) to define the location of the inboard
joint on a link relative to the outboard joint. That is, the
coordinate origin for a link is located at its outboard joint
for the DH method, while it is at the inboard joint in the

Craig method. The A matrix is defined as (Spong, 1989,

p.66):
)
»
9, -8, co, 80 sa, a, b, \
- %) ), coy, -cB, sa 80
, L y GOty g 80y a, 8, (4.4)
A =|0 = o, 4,
i-1
0 0 0 1 )




The subscript and superscript of the A matrix are defined the
same as the T matrix above. However, by convention, the index
is transposed.

These transformation matrices provide information on the
rotation and translation needed to superimpose the frame being
transformed to the relative frame. The rotation information
is the top left 3 x 3 sub matrix in the transformation matrix.
The translation information is in the right column in the
first three rows.

The base joint is aligned with the coordinates that the
designer would like to use to reference the link positions.
Usually, for fixed base manipulators, the base joint axis is
aligned with the Earth’s coordinates. To transform the joint
in question, the transformation matrices need to be multiplied
together (Craig, 1989). For example:

O = 0T + ' » J7 » ST (4.5)

oA = JA * A % A % fA (4.6)

E. AQUAROBOT KINEMATICS

Aquarobot’s six legs are identical manipulators except for
their angle off of the body’s forward axis. In order to
simplify the leg parameters of the first link, an imaginary
link was constructed from the body’s center to the point where
the leg joins the body. This makes the body’s center the base
joint. The Craig method will be used in this thesis to solve

the kinematic equations for Aquarobot’s legs.
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1. Aquarobot Leg Parameters

(...l‘;

Common symbols exist for the parameters. They are:

link length (a;), link twist (o;), link offset (d4;), and joint '

W

angle (0,). Figure 4.3 shows one Aquarobot 1leg with the

imaginary leg link included.

Figure 4.3

Aquarobot Frame Descriptions Of One Leg and The Body




Figure 4.4

Top View of Aquarobot Showing First Two Angles

and Axes for Leg Six

The parameters for Aquarobot’s legs are shown in Table
4.1 relow. Note that the joint angle of the base (i = 0) is
the only fixed parameter that varies among the legs. The joint
angle range for the other joints common to all legs are given.
These limits are the physical joint ranges. Joint four does
not have a frame designated because it is a passive ball

joint.




TABLE 4.1

AQUAROBOT KINEMATICS PARAMETERS

inboard outboard
1link inboarad cutboard | 1limk
oint t**;: 1ink 11:k joigt
n1 ., 1! < °i'.t Qf ® physical limite
. 0.0 e, O, =0,60,120,180
° -0 0.0 * = %340 300 :
1 0.0 37.8 0.0 o, -60 «= O, <= 60 '
a -90.0 20.0 0.0 O, «106.6<m O, «=73 .4
3 0.0 0.0 0.0 o, ~1%6 . 4<= @, <=23.6
4 0.0 100.0 0.0 e, —48cm O, <=48

2. Transformation Matrices
The transformation matrices of the Aquarobot legs were
constructed using Table 4.1 above. The Craig method
transformation matrix template was used. The computed 1link

transformations are thus:

8, ~o0, o o
rp = -0, ®, o o (4.7)
o o o 1 o

o o o 1 |

—

<o, -a8, o 37.s
° = =8, <9, o ° (4.8)
1 o o 1 o

o o o 1
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B, -0, o 20
i — o (o] 1 (o]
a T = (4.9)

-0, -9, o (o]

o] o o] 1

B, -0, o 50
2 m = =0, B, o] o (4 -10)
3 o o 1 o

[o] (o) (o] 1

B, -89, o 100
3 T — -b, B, (o] o (4 . 11)
4 o o 1 o

(o] o] (o] 1

Multiplying the T matrices together provides the joint
coordinates in reference to the body’s center. These
Cartesian coordinates are found in the third column of the
product of the T matrix multiplication.
The T matrix product of each joint is called the
o eneo sfo tion matrix (i.e., H matrix). To
determine the next outboard joint’s orientation based upon the
reference frame, the H matrix of the current (relatively
inboard) joint is multiplied by the outboard joint’s T matrix.
The joint’s H matrix provides the orientation from the

reference frame outboard to that joint.
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The H matrix for the body provides orientation of the
body frame {(and, in turn, its outboard joints) to the fixed
retference frame which is usually a designated point on Earth.
The initial orientation informatiqn required is azimuth,
elevation, roll, and translationlfrom the reference'’s origih.
Elevation is defined as rotation of the body X-axis above or
ibelow the horizontal plane. Azimuth is the rotation of this
axis away from north about a downward directed axis. Roll is
rotation about the quy X-axis after azimuth and elevation
rotations have been accomplished. The H matrix is defined as

(Craig, 1989, p. 46):

L o ———— EmeE—

c(a)c(i)' c(a)s(e)s(r)-a(a)c(r) c(a)s(e)c(r)+s(a)s(r)

L

H = a(a)c(e)  s(a)s{e)s(r)+c(a)c(r)  sla)s(e)c(r)-c(a)s(r) vy (4.12)

-g(e) cle)s(x) c(e)c(r) 2
0 0 0 1
I R |

where a = azimth e = elevation r = roll

When the body moveé, its H matrix relates its body
coordinate system to theA worid coordinate system. | The
_cumulative effect of the body’s motion is transferred to the
individual 1links via the H-matrix and continues to be

transferred outboard in this manner.
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{ F. INVERSE KINEMATICS
Inverse Kinematics provides the parameter values needed to
move the joints to a desired position. The transformation
matrix products above are equated to the generic
transformation matrix to make a set of nonlinear eguations

(Craig, 1989, p. 123).

e | ][]

000 1
T, T, X, x
Ta Ia X Y
B Xy b SV Ly z (4 .13 )
0 0 0 1

These egquations are solved simultaneously for the unknown
parameters (joint rotation in the case of Aquarobot). The
inverse kinematics of Aquarobot are solved in another thesis
(Schue, 1993). There are occasions when two solutions for a

parameter are possible (Craig, 1989).
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G. BUMMARY

Aquarobot’s design uses rotating joints. Rotating joints
have an advantage over sliding joints in that they generally
provide increased dexterity. Additionally, such joints can
usually be made smaller than sliding links (Spong, 1989).
They are also easier to waterproof for an underwater walking
robot.

Kinematics analysis permits Aguarobot’s foot positions to
be easily determined using successive transformations.
Kinematics equations can be manipulated quickly using
computers. Object oriented programming simplifies the
numerous transformations necessary for an intricate multi-link
system. Object oriented programming is discussed in the next

chapter.
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V. OBJECT ORIENTED PROGRAMMING

A. INTRODUCTION

Object Oriented Programming emphasizes the subjects which
operations act upon in contrast to the traditional programming
method of emphasizing the algorithms and the order necessary
to execute them (Booch 1991). The Object Oriented (00)
designer constructs his modules of code based on items (known
as objects). These objects need not in every case accomplish
anything significant, but they do at a minimum provide
encapsulated data. Other designers construct their modules
based upon the data and algorithms that are associated with
such blocks.

00 code permits the designer to produce elementary
components and then link these objects together to produce a
complex systen. This parallels the thought process that
humans use to think of objects around them.

00 code provides two structures, object and class.
Classes are the blueprints of a component and exist in a "kind
of" hierarchy. Objects are the actual produced copy of the
object (instances of classes) and may exist in a "part of"

hierarchy in relation to other objects.
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B. CLASS DEFINITION AND CLASS HIERARCHIES

Classes are the building blocks or key designs of a
system. They are synonymous with a factory’s product
blueprints. Classes provide the ability to make many modules
(objects) that are designed identically. Each object, when
made, provides the "essence" of the class (Fink, 1992).
Classes are static, and the information, known as fields, of
the class are fixed. The class definition provides a template
for the production of objects.

A class can inherit from one or more superclasses. The
inheriting class is known as a subclass. A class can also have
subclasses which consists of it and additional information.
Each senior, top level module, represents one of the most
general designs in a systemn.

Class structures may include object fields, also known as
slots, from multiple superclasses with subclasses created
using some priority scheme or other means to resolve conflicts
(Booch, 1991). These class frameworks are transferred to the
objects that are produced.

Multiple class structures form a design. Seldom does one
class concisely define a system. The class hierarchy permits
all nuances desired, regardless of significance, to be defined
as the designer chooses at that level.

The classes designed to serve as templates are defined as
concrete classes. They are expected to have objects

instantiated from them (de Paula and Nelson, 1991).
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Not all classes are designed as templates for actual
object instantiation. These are called abstract classes.
They are higher level classes which hold knowledge that all of
their subclasses have in common. Abstract classes reduce
duplication of common knowledge (Wu, 1991). They are written
so that multiple subclasses can inherit from them.

A class capability provides two of the three features
necessary for 00 programming. First, it provides for a design
to be defined in a generic format. Second, it allows the

designs to be modularized at the most general level, yet still

provides for a relationship framework where additional design

features can be added in subclasses (Booch, 1991).

C. OBJECT DEFINITION AND OBJECT HIERARCHIES

Objects are the useable products of OOP and provide the
third capability needed for utilization of this technology.
They are concrete software entities that can be manipulated.
An object has all of the properties of its class. All objects
produced from the same class contain identical fields and
functions, yet it is important to understand that each object
has its own identity and its own name when produced. It is by
this name that the object is addressed within the code. The
objects are facsimiles of the class and its behavior and
fields. However, they may be elaborated individually (Eckel,

1989).
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An object is constructed by creating an instance of the
class desired. All superclasses and their defined functions,
also known as methods, are available to the object. It is not
necessary to have an object for every class. A class may have
zero, one, or multiple instances of itself (de Paula and
Nelson, 1991).

An instance of an object may be produced by two different
schemes. First, an object may be instantiated within the main
program. This object may subsequently be addressed by its
created name. Such an object is a top level object within the
software. It may also be considered a subobject if it is
used as part of a larger composite object. The second type of
object, a dependent object, is instantiated directly and
automatically as a part of another object. The dependent
object is considered a component of the object it is
instantiated within and has no independent name. A dependent
object is instantiated during construction of the main object
and is destroyed when the main object is destroyed. For
example, a sports car, when produced, can be thought of as an
object and its components, such as the doors, can be
considered dependent objects since they are made during the
sports car’s construction and are legally part of the vehicle.

Objects, when instantiated, acquire all of the fields of
the class, but the values of these characteristics may be
initialized individually during the construction of the

individual objects. For example, this permits numerous
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objects of the same class to be instantiated yet have
different measurements or characteristics.

An object may change its slot values during its existence.
This provides an object with a history. An object may be
created and destroyed. The object’s functions can not be
violated. Objects perform functions by sending requests.
These functions are designed within the class structure and
are applicable to the objects instantiated from the specific
class or its class hierarchy. This capability to perform
functions enables an object to be much more than a data
structure.

Functions, history, and "lifetime" characteristics provide
objects with state, behavior, and identity (Booch, 1991).

This parallels their real-world counterparts.

D. INHERITANCE

Inheritance is defined as a "... mechanism for resource
sharing in hierarchies" (Wegner, 1987, p. 169). It is a
unique contribution of 00 languages. Inheritance provides an
easy way to create objects that are very similar, although
individual instances may have some differences (Stefik, 1986).
The subclass is a specialization that augments or alters the
structure and behavior of the inherited class. It inherits all
functions and methods defined for its superclasses. This

includes all attributes that the superclass inherited form its

superclass (Wegner, 1987). A subclass may have fields or




methods which modify, elaborate, or add to those inherited by
its superclass (Booch 1991).
When a subclass has one superclass, this is called single
inherjtance. Two or more superclasses defines pmultiple
erjita . Inheritance is a class relationship rather than

an object relationship.

E. CLASS 2>ND OBJECT DIAGRAMS

Class and object diagrams provide a logical view of a
system. The difference between object and class diagrams is
an important concept in 00 design.

Class diagrams are built on interclass relationships
involving inheritance. Superclasses and subclasses describe
these diagrams. Class utilities provide a special
relationship within the class diagram. A class utility is an
abstract class type which provides functions that do not
belong to one particular class but are accessible to all.
Figure 5.1 displays an example of a representative class
diagram. Note that there is only one of each class in the
class diagram.

Figure 5.1 displays an automobile class diagram. The top
level module, the automobile class, is the superclass. In
this class structure, subclasses are necessary. Two subclass
levels are necessary in order to reach a concrete class. The
Porsche can be produced but a sports car is an abstract class

that can not be instantiated.
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AUTOMOBILE
slots:
lnn:::mnt
:!o:
JEEP STATION SPORTS
slote: WAGON CAR
rollbasrs akote:
back seats ll::::.”
KEY:
CONCRETE
O cuass
PORSCHE
ABSTRACT
- CLASS
SUPERCLASS SUBCLASS
a- ~of
Figure 5.1
Example Class Diagram
Object diagrams "... show the existence of objects and

their relationship in the logical design of the system ..."

(Booch, 1991, p. 169). An object diagram shows the
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relationship between objects and presents each object as "part
of" the total system. Figure 5.2 is an example of an
automotive system via its object diagram.

In Figure 5.2, a Porsche is instantiated as the object
desired. In order to create a Porsche, however, many
subsystems (dependent objects) are needed. A few example

dependent objects are displayed.

Figure 5.2

Example Object Diagram

42




A composite object is defined as an object linked to
other objects by part-of relationships. Parts of the

composite objects may be subobjects or dependent objects.

F. CONCLUSIONS ABOUT OBJECT ORIENTED DESIGN

00 Programming allows designers to begin with a simple or
general system. This principle of beginning with a large,
less specific class or object is similar to human perception.
First, humans detesrmine what the overall item in questions is.
For example, a person may look at a car. He or she is likely
to note the model of the car at that time. Then, smaller
"part of" subsystems of the car or specific slot values may be
inspected. For example, the year the car was produced or the
air conditioning system may be looked into. 00 code permits
the programmer to define subclasses or components when they
are needed or as the system is elaborated upon. This allows
the programming to be accomplished in small increments. 00
designs allow attention to be focused on the appearance and
external capabilities of objects instead of on software
implementation details. This prevents too much information
from "cluttering” the user’s view (Snyder, 1986). Another
advantage to 00 Programming is the capability to improve or
alter class slots as the system changes or as corrections are
needed. This resilience and the capability to reuse small
subsystems in multiple objects makes 00O code economical (Booch

1991).
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00 Programming encourages reuse of entire software class
hierarchies. The modular design of 00 code permits new users
to incorporate existing code without having to retest
functions or redesign code. This extendibility of code life
reduces a designers programming time. The modular design of
class code permits the user to use the functions of the class
without reguiring an intimate detailed knowledge of the
function’s inner workings.

A disadvantage of 00 Programming is that classes may be
designed without placing functions in the most general
superclass. This causes identical functions to be defined in
numerous subclasses and increases complexity. Repetition
should be minimized by placing common functions of two or more
classes in a superclass. Of course this can be an iterative
process with common properties or methods being factored out

and moved upward in a class hierarchy as they are noted.

G. SUMMARY

Human capacity is limited in its capability to grasp
complex systems. 00 code enables a person to look at a complex
system as a collection of various subsystems. It also
provides the capability to only look at areas of interest

within an object/class.
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Object Oriented programming provides software that is
"malleable". This is directly due to class structure and
inheritance, a unique characteristic of this code (Booch,
1991).

The difference between the class and object structures is
a subtle but important one. An object is an instance of a
class and the object may be created and destroyed within a
program. A class is designed but it is static when a program
is executed (Booch, 1991).

The long life span, maintainability, and flexibility in
application of Object Oriented code makes it the premiere
choice when a design with multiple subsystems is desired. The
greatest hindrance of Object-Oriented Programming’s potential
to be the popular choice in industrial design is its current
lack of widely excepted standards. However, there seems to be
considerable consensus on OOP’s primary concepts. The next
chapter describes 00 languages suitable for development of an

Aguarobot kinematic simulation.
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VI. OBJECT ORIENTED PROGRAMMING LANGUAGES

A, INTRODUCTION

Not all computer language.; are able to support OOP. Four
predominant languages with 00 capability are CLOS, C++, Object
Pascal, and Smalltalk. Aquarobot is designed using CLOS and
C++. Aquarobot’s class and object hierarchies are described

and then created with CLOS and C++ code.

B. DESCRIPTION OF CLOS
1. History

LISP evolved in the late 1950’s and was named for its
performance method: List Processing (Winston, 1989). The
fundamental element in LISP is a wordlike object known as an
atom. A group of atoms (similar to a sentence of words) is
known as a list (Winston, 1989). It is these lists which LISP
is designed to manipulate. LISP allows for lists to be added
to or deleted from indefinitely. Specific atoms may be
extracted or manipulated using LISP created or library
functions.

Common LISP was officially designed in 1984 to
accumulate the existing LISP variations into one standard
version. This standardization was advantageous for academic

and industrial use (Steele, 1990). Common LISP was then
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extended to provide 00 capability and this extension is known
as CLOS (Common LISP Object System) (Steele,1990).

CLOS (pronounced see-loss) permits each class to have
local and shared slots. These slots can be directly accessed
and modified by the programmer (Winston, 1989). CLOS provides
for multiple inheritance within the class hierarchy.
Conflicts in multiple slot inheritance is avoided due to
conflict precedences which define the first superclass listed
as superior (Fink, 1992).

2. Benefits in the Kinematics Soluti.:.

CLOS (and therefore LISP) has many advantages in the
robot kinematics solution. CLOS operates in an interpretive
environment that facilitates interactive programming,
providing information such as variable status, with rapid
response (Winston, 1989). This capability for immediate
answers to a drafter’s questions provides ease in debugging
as well as the drafting of programs (Winston, 1989). Lists
are addressed and manipulated using programmer defined
symbolic names which generally tend to decrease the code
length and improve readability (Keene, 1989).

The symbol manipulation and interactive capability of
CLOS simplify the kinematics solution. Each limb’s joints can
be placed in one list or each parameter can be designed as an

atom in a joint list. CLOS code provides compact code .or

extensive systems as well as functions that are easy to read.
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More generally, academic institutions and industries can
create complex systems with big programs that run faster and
are less expensive due to the compact code (Winston, 1989).

CLOS also incorporates the natural language
orientation of LISP. Class and object structures and their

slots and values are easily understood (Keene, 1989).

C. DESCRIPTION OF C++
1. History
C++ was designed in 1986 at AT&T Bell Laboratories by
Bjarne Stroustrup, and is a superset of the C language (Booch,
1991). C++ incorporates the programming abilities of C and
adds 00 properties as well as type checking and operator
overload functions. In 1989, C++ Version 2.0 provided
multiple inheritance (Stroustrup, 1991).
2. Benefits in the Kinematics Bolution
C++ is similar in format to many presently popular
languages such as Ada and C. The familiar format is an
advantage of C++ when an OOP language 1is necessary.
Cconversely, LISP has a unique format that is not currently
a popular choice in academic institutions or industry. This
uniqueness is a disadvantage to CLOS unless the drafter
understands LISP.
C++ permits wusers to apply functions without
necessitating intimate detailed knowledge of the class inner

workings (Booch, 1991). C++ uses a header file to provide a
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top level view of class structure and the functions which
apply (Booch, 1991). Functions must be defined for a specific
class within its hierarchy because of C++’s strong typing.
Subclasses may alter functions that their superclass defines.
Common operators such as addition (+) and equality (=) are
generically defined for common classes (e.g., integer, double,
array, etc.), but they must be redefined in new classes where
their use is desired (e.g., a matrix class or 1link chain)

(Ammeraal, 1991).

D. SMALLTALK AND OBJECT PASCAL DESCRIPTIONS

Smalltalk and Object Pascal are also 00 languages. Like
C++ and CLOS, Object Pascal provides an enhancement of the
Pascal language. Object Pascal was specifically designed to
add an 00 capability to Pascal. However, Object Pascal is
more restrictive than C++ in code development (Booch, 1991).
All class slots are public so slots may be changed while
performing another class function (Booch, 1991).

Smalltalk was designed as a pure 00 language and provides
many predefined classes. Unlike Object Pascal, all slots in
Smalltalk are private. Object Pascal is unique in that it
provides an overall system template and all created classes
are considered subclasses of a predefined superclass called
"Object" (Booch, 1991). Smalltalk is not a strongly typed

system, therefore a compiler cannot optimize the code.

Smalltalk is limited to single inheritance (Booch, 1991).




E. BSUMMARY

00 capability is presently a popular (and seemingly
necessary) addition to current programming languages. This
development coincides with the increased use of 00 in academic
and industrial system design.

CLOS provides an easier format for user’s to read than
C++. However, C++ provides non-list manipulations which are
often more efficient. Both languages require knowledge of the
original language they embellished or a similarly formatted
language. CLOS requires less code space than C++, but C++
usually executes more efficiently, and may require less
memory.

CLOS provides dynamic memory allocation and uses "garbage
collection” to accumulate unused memory space. Activity is
suspended during garbage collection which may hinder real time
calculations in some garbage collection methods. In contrast,
C++ uses a memory heap which requires that memory be removed
and then explicitly returned to the heap when the memory space
is no longer needed. The next chapter provides a description
of CLOS and C++ and examples of their formats in the context

of the Aquarobot code developed in this thesis.
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VII. AQUAROBOT CODE DESCRIPTION

A. INTRODUCTION

In order to produce an Aquarobot simulation, each of the
robot’s major parts needed to be simulated. OOP was chosen as
the best method to achieve this goal. One version of
Aquarobot was written in CLOS by Prof. Robert McGhee at the
Naval Postgraduate School. The other version was written in
C++ by this author. In this chapter of this thesis, the
object and class diagrams for these two inplementations are
presented along with examples of the method each language uses
to produce an individual class and instantiate an object. The
C++ graphics code is discussed and examples of the display are
included. The complete CLOS and C++ Aquarobot programs are

found in Appendix A and B respectively.

B. AQUAROBOT CLASS AND OBJECT HIERARCHIES

The class hierarchies designed to produce an Aquarobot in
CLOS and C++ are shown in Figures 7.1 and 7.2 respectively.
These two figures are not identical, but there are major
portions that are similar.

The RigidBody class is a superclass of the system. Its
subclasses are the major pieces with which Aquarobot and its

components are created. The Aqualeg class uses the Link

51



camera aguarcbot-body
s1iding-1ink
Linko 1ink2
\ g
\ 1inki ! ai
\ T r g
\ ! s
! Ve

squa-leg OBJECT part-of OBJECT
SUPRRCLASS ;s::: SRCLASS
3 oo

Figure 7.1

CLOS Aquarobot Class Diagram
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C++ Aquarobot Class Diagram
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subclasses (1ink0 through link3) and a few numerical slots to
create another top 1level class. The Aqualeg class also
possesses functions that manipulate an AqualLeg type. The
Matrix class is unique to the C++ version. The CLOS version
uses lists to store data while the C++ version uses this
defined Matrix class and its functions to store and manipulate
the data. The Matrix class is a typical example of a class
utility.

The object hierarchy used to instantiate an Aquarobot
differs in the two versions. Figure 7.3, the C++ object
diagram, constructs Aquarobot as seven subobjects which can be
deleted or reproduced without affecting the existence of the
other. Figure 7.4 displays the CLOS object diagram that has
one top level object with dependent object hierarchy
containing a total of thirty-one objects. The Leg object and
its dependent subobjects are identical in each language

version.

C. AQUAROBOT CLASS DEFINITION CODE

Classes are defined in various ways dependent upon the 00
language used. There are, however, many similarities in class
attributes. For example, both CLOS and C++ have slots for the
items within a class. The Aqualeg class definition in both

language versions is explained in the following paragraphs.
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1. CLOS Class Description

CLOS provides a template that contains both optional
and mandatory information requirements. This template can
be found in CLOS manuals. Figure 7.5 is the aqua-leg class
defined using CLOS. Eight slots are defined and then
initialized using the :jnitarg or :initform command. The
dependent objects shown in Figure 7.4 are instantiated
within the agqua-leg class as 1inkO0 through 1ink3 using the

make-instance command. The 1inkO class, for example,

incorporates the superclass slots of Link.

The functions related to the aqua-leg class are
defined outside of the class definition in defmethods.
"Initialize-leg" is a function which requires an "aqua-leg"
and an "aquarobot-body" class as input. Each input is given
a local variable name of "leg" and "body" respectively. The
functions may call other functions or change slot values.
The CLOS code includes a camera class because the code was
developed on a Sun workstation while the C++ version uses
the graphics library on a Iris workstation.

2. C++ Class DESCRIPTION

The C++ Aqualeg class is defined within the Aqualeg.H

file (Figure 7.6). Like the CLOS version in Figure 7.5, there

are four dependent objects that are slots of the AqualLeg

class. Like the CLOS version, functions which are applicable




(defclass aqua-~leg ()
((leg-attachment-angle

:initarg :leg~attachment-angle
:accessor leg-attachment-angle)
(1inko

:initform (make~instance ’1ink0)
:accessor link0)
{linkl

:initform (make~instance ’1linkl)
saccessor linkl)
{link2

:initform (make-instance ’1ink2)
:accessor link2)

(1ink3

tinitform (make-instance ’1link3)
:accessor 1link3)
(motion-complete~flag

:initform nil

taccessor motion-complete-flag)
(previous-foot-position

:initform nil

:accessor previous-foot-position)
(current-foot-position

tinitform nil

taccessor current-foot-position)))

(defmethod initialize-leg ((leg aqua-leg) (body aqguarobot-body))
(setf (inboard-link (1ink0 leg)) body)
(setf (inboard-link (linkl leg)) (1link0 legq))
{setf (inboard-link (link2 leg)}) (linkl leg))
(setf (inboard-link (1ink3 leg)) (link2 leg})
(rotate~link (link0 leg) (leg-attachment-angle leg))
(rotate-link (linkl leg) (inboard-joint-angle (linkl leg)))
(rotate-link (link2 leg) (inboard-joint-angle (1link2 leg)))
(rotate~link (link3 leg) (inboard-joint-angle {(link3 leg)))
(setf (current-foot-position leg)

{ncar 3 (first (transformed-node-list {(link3 leg))))))

Figure 7.5
CLOS Code Excerpt Defining and Implementating

Aquarobot Leg Kinematics



class Aqualeg
{
public:

// these dependent objects are instantiated

Link0 *1ink0; ]
Linkl *linkl1;

Link2 *1ink2;

Link3 *1ink3;

// the flag is set to 1 if the motion is completed without
// reaching any link limits
int motion_complete_flag;

// the flag is set to 1 if the leg is on the ground
int leg_support_flag:;

// the angle off of leg one where the leg is attachec to
// the body ]
double leg attachment_angle;

Aqualeg (AquarobotBody&, double); // constructor and initializer

~Aqualeg () ; // destructor

void MovelIncremental (AquarobotBody &, double deltal, double delta2,
double delta3):

double GetLegAttachmentAngle() ( return leg attachment_angle:;}

int GetMotionCompleteFlag() { return motion_complete_flag:;}

void SetLegAttachmentAngle{(double angle) {leg attachment_angle = angle;}

void SetMotionCompleteFlag(int flag) {motion_complete flag = flag:}

int GetLegSupportFlag() { return leg_support_flag:}

void SetLegSupportFlag(int flag) {leg_support_flag = flag:;}

}:

#endif '

Figure 7.6

C++ Code Excerpt Defining Aquarobot

Leg Kinematics } )




to the Aqualeg class are included within the class definition.
An example, shown in that figure, is the "Move Incremental"
function which increments the joint angles of a specified leg
by a given amount.

The C++ function similar to the CLOS "initialize-leg"
function is the C++ constructor "AqualLeg" shown in Figure 7.6.
This function requires an AquarobotBody class and a double
number as inputs. This and the other AqualLeg functions are
defined within the Aqualeg.C file (Figure 7.7). Like the CLOS
version, it is within the constructor that the dependent
objects, Link0 through Link3, are instantiated. Similar to
the CLOS version, other functions may be called or slot values
altered. The "matrix" class, found within the MatrixMy.C and
MatrixMy.H files (see Appendix C), is a class utility and is

used within the Aqualeg constructor.

D. AQUAROBOT OBJECT INSTANTIATION CODE

Objects may be constructed in various composition within
an OOP. However, the method of actually instantiating an
object varies among 00 languages. The CLOS version, shown in
Figure 7.4, displays one top level object while the C++
program, shown in Figure 7.3, makes seven subobjects to
produce one Aquarobot system. This section will discuss the
individual language’s method of instantiation using the two

Aquarobot versions.




// I3RS 2R R S 22X e R X 2RSSR S22 R R RZRRRR SRR RS R R 2

// FUNCTION: ~Aqualeg ()
// PURPOSE: destructor of Aqualeg class

// 2222222222222 22 2 X2 R 22222223222 22222222 222222282 222222 22X

Aqualeg::~Aqualeg ()

{
delete 1inkO0;
delete linkl;
delete 1link2;
delete 1ink3;

}

// 22222222222 22222822222 R 223222 R s 22222 22 a2 ate s s sl g

// FILENAME: Aqualeg
// PURPOSE: constructor of AqualLeg class
// RETURNS: Aqualeg class with values

// (22222 R RS2 22 X 222222222 222222222 XX22 2222222223222}

Aqualeg: :Aqualeg (AquarobotBody &body, double angle)
{
motion_complete_flag = 1; // initializes flag value
SetLegAttachmentAngle (angle) ;
1link0 = new LinkO0;
linkl = new Linkl;
link2 = new Link2;
link3 = new Link~,

// initial link values initialized

// temp matrix adds in the T_matrix needed for the physical
// attachment of the leg to the body
matrix temp;

// updates the Transformation matrix from body center to the
// leg attachment point
temp.UpdateTMatrix (Get LegAttachmentAngle(),0.,0.,0.);
temp = *body.H_matrix * temp;
link0->RotateLink (&temp ,1link0->GetInboardJointAngle());

linkl->Rotatelink (1ink0->H_matrix, linkl->GetInboardJointAngle()):
link2->RotateLlink (1inkl->H_matrix, link2->GetInboardJointAngle()):
link3->RotateLink (1link2->H_matrix, link3->GetInboardJointAngle{());

Figure 7.7
C++ Code Excerpt Implementing Aguarobot

Leg Kinematics
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1. CLOS Object Description

The CLOS version produces an Aquarobot by performing
the function "aqua-picture" in the LISP screen environment.
This function’s code is displayed in Figure 7.8 and
instantiates a top level object, Aquarobot, (named "aqua-1")
in its first line using the make-instance command. The class
"aquarobot” is used as the blueprint for this instantiation.
This class consists of one body and six legs ("legl" through
"leg6") as dependent objects. These slots are instantiated
using the same make-jinstance command when an "aquarobot" is
created. Slot values are instantiated within the aqua-leg
instantiation using the variable :leq-attachment-angle which
was the initializing argument for a slot with the same name in
the aqua-leqg class (Figure 7.5).

2. C++ Object Description

Bot.C (Figure 7.9) is the main program the C++
version. This program controls the construction of the
Aquarobot. The AquarobotBody and six Aqualegs are
instantiated at this top level and they are all subobjects
since there is no explicit Aquarobot instantiated. Similar to
CLOS, each object is given a name (for example "leg3") and
initialization values at the same time it is instantiated.

C++ does not provide a command that equates to CLOS’s make-




(defclass aquarobot ()

( {(body
:initform (make-instance ‘aquarobot-body)
:accessor body)

(legl
tinitform (make-instance ’'agqua-leg :leg-attachment-angle (deg-to-rad 0))
raccessor legl)

(leg2
:initform (make-instance ’'aqua-leg :leg-attachment-angle (deg-to-rad 60))
:accessor leg2)

{leg3
:initform (make-instance ‘aqua-leg :leg-attachment-angle (deg-to-rad 120))
:accessor leg3l)

(leg4
:initform (make-instance ’‘aqua-leg :leg-attachment-angle (deg-to-rad 180))
:accessor leg4)

(leg5
:initform (make-instance ‘aqua-leg :leg-attachment-angle (deg-to-rad 240))
:accessor legb)

(leg6
:initform (make-instance ’aqua-leg :leg-attachment-angle (deg-to-rad 300))
raccessor legé6)))

(defmethod initialize ((aqua aquarobot))
(transform-node-1ist (body aqua))
(initialize-leg (legl aqua) (body aqua))
(initialize-leg (leg2 aqua) (body aqua))
(initialize-leg (leg3 aqua) (body aqua))
(initialize-leg (leg4 aqua) (body aqua))
(initialize-leg (leg5 aqua) (body aqua))
(initialize-leg (legé aqua) (body aqua)))

(defun aqua-picture ()
(setf aqua-1 (make-instance ’aquarobot))
(initialize aqua-1)
(setf camera-1 (make-instance ’‘camera))
(create-camera-window camera-1)
(take-picture camera-1 aqua-1l))

Figure 7.8

CLOS Code For Aquarobot Class
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main ()
{

/* value returned from the event queue */

short value;
long mainmenu;

long hititem;

FILE *ifp;
ifp = fopen("bot.dat","z");

/* initialize the IRIS system */
initialize():

/* Create Pop Up Menus */
mainmenu = makethemenus();

// make the robot from its pieces
AquarobotBody aquabody:

Aqualeg legl{aquabody,0.0);
Aqualeg leg2 (aquabody, 60.0);
Aqualeg leg3(aquabody,120.0);
Aqualeg leg4 (aquabody, 180.0);
Aqualeg leg$ (aquabody,240.0):
Aqualeg legé (aquabody, 300.0);

Figure 7.9
C++ Code Excerpt From Main Program Showing

Instantiation of the Parts of Aquarobot

64




instance command. Instead, C++ instantiates an object by
declaring the class and providing a name and information

necessary.

E. GRAPHICS
1. Graphics Display

The CLOS version of Aquarobot (Appendix A) was
graphically simulated on a low end Silicon Graphics Indigo
graphics workstation using a LISP camera object. This is the
camera.cl file in Appendix A and it was created as a debugging
tool because CLOS does not provide a graphics capability
within its library. Examples of the CLOS graphics produced by
a camera object are in Appendix C. The C++ version of
Aquarobot (Appendix B) was simulated on the same workstation
as the CLOS code. The C++ code uses the system’s basic
graphic library, gl. The C++ graphics code will be discussed
in this section.

The C++ simulation was developed to support the
debugging of control software. A user’s manual explaining its
use in this application has been produced (Suzuki, 1993). The
graphics code is included in bot.C in Appendix B. This file
includes the main program (a requirement of C++) which
provides the initial instantiation of Aquarobot and controls
function calls. This file also provides the graphics setup

(in the initialize function) and the function that draws the




stick figure Aquarobot (in the drawaqua function). This
coordination of bot.C is depicted in the flow diagram in
Figure 7.10.

Aquarobot is instantiated in the reset position.
Figure 7.11 displays this first graphical view. The next
motion for Aquarobot is provided from the output of the gait
algorithm. The information is provided by the position and
orientation change of the body and the change in joint angle
for each joint of each leg. The respective changes are
transferred to the body’s Movelncremental function and leg
Movelncremental function. These functions update desired body
and link positions. The body’s function is called first
because each leg uses the body’s updated H matrix computation
in their functions. The function FindPositions determines the
Cartesian coordinate location of each joint and the footpad
for each leg, as well as the body’s position and orientation.
Figure 7.12 shows a change ordered in one of leg one’s joint
angles. The C++ graphics code continuously polls for an
acceptable queued signal. This signal determines the path
taken and the functions performed within that option.

The CLOS version uses the user interface on the
terminal as its main program. As shown in the script file of
Appendix C, this method does not use an explicit continuous
polling loop like C++. Rather, LISP provides an infinite

read-eval-print loop within its user interface. Appendix C
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also provides examples of Aquarobot graphics obtained using
the code in Appendix A.
2. User Interface

In the C++ version of the Aquarobot simulation code,

one acceptable queue signal is the clicking of an option on

the menu shown upon the screen. Figure 7.12 displays the menu

and its options. The options provide various camera views of

Aquarobot and the ability to read from a data file that

consists of data changes. The camera views are particularly

helpful in the debugging of gait motions conducted in the gait

algorithm function.

F. SUMMARY

C++ and CLOS are both similar in their method of defining
a class. The instantiation technique differs between the
languages with C++ requiring a class constructor function that
defines the instantiation while CLOS uses a reserved command
and the class definition.
The Aquarobot programs were not designed from identical class
and object hierarchies and this provides varied examples of
design as well as 00 language variations. Appendices A and B
include the entire CLOS and C++ codes. Appendix C provides a
script file and graphical pictures produced using the CLOS
version. The next chapter evaluates the CLOS and C++ codes

and their performance.




Figure 7.12

Ordered Motion Aquarobot Graphic Display
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VIII. EVALUATION

A. INTRODUCTION

Both the CILOS and C++ versions were successful in
producing a graphic simulator of Aquarobot. Each code,
however, varies in its graphical performance and code

characteristics.

B. CLOS/C++ CODE EVALUATION

The CLOS code usually requires less lines of code to write
a function than C++. The codes in Appendices A and B display
approximately a three to one ratio of length in favor of CLOS.
This compact code provides CLOS an advantage in
understandability and prototyping. Unfortunately, CLOS
function definitions, when optimized for conciseness, may be
rather cryptic. C++, although longer in length, is similar in
format to many more common languages, and therefore it is in
some ways easier to read, especially by programmers not
skilled in CLOS and LISP.

CLOS provides dynamic memory allocation and uses garbage
collection to accumulate unused memory space. Activity is
suspended during garbage collection methods. In contrast, C++
uses a memory heap which requires memory to be removed and
then explicitly returned to the heap when the memory space is

no longer needed.

71



C++ and CLOS are both similar in their method of defining
a class. The instantiation technique differs between the
languages with C++ requiring a class constructor function that

defines the instantiation while CLOS uses a reserved command,

make-instance, and the class title.

C. CLO8/C++ GRAPHICAL EVALUATION

Both Aquarobot versions were simulated with the same leg
and body motions. The time required to calculate new joint
parameters via kinematics was recorded. The compiled CLOS
version requires 310 ms for execution and display of one move
(six degrees of freedom for body motion and 18 leg joint
motions) while 160 ms is required for the same result using
the C++ version.

The numerical results above were run without either code
being optimized, nor were compiler switches set for optimized
code generations. The C++ version performed faster than the
CLOS version by a factor of two to one. The C++ speed
advantage was not noteworthy enough to recommend against using
CLOS unless execution efficiency is the dominant factor. 1In
addition, CLOS required less programming effort (i.e., more
compact code) than C++. This author recommends CLOS as a
prototype executable specification code when a complex systems
are involved. However, the common format and familiarity of

C++ provides a better comprehension of the code by others who

72




might use or modify it (which are major advantages). In
addition, it appears that C++’s two to one speed ratio may be

improved with optimization.

D. SUMMARY

The C++ and CLOS Aquarobot objects have been designed
using classes that are common to all rigid body manipulators.
The generic classes are defined in both code versions and can
be incorporated into other robot design code. This
reusability of 00 code as well as its simple modification
steps are advantages to this design in this and other research
projects, since future researchers may build on current work.
This author’s C++ code is currently being used in Aquarobot
dynamics research for a dissertation at Ohio State University
(McMillan, 1992).

The C++ code is also being used for its original purpose
as a simulator to debug control algorithms. Specifically,
Master degree students at the Naval Postgraduate School are
currently using this simulator to investigate gait algorithms
(Schue, 1993). The graphical simulator provides a useful and
time saving method to check this work visually. 1t also
provides an environment where innovative methods for motion
can be tried without requiring the physical robot to be put
into danger. The last chapter of this thesis provides
conclusions concerning this research project and suggests

topics for future research.
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IX. CONCLUBIONS

M. INTRODUCTION

This thesis represents the beginning of a major research
effort to provide a generic walking robot simulator, although
the concépts developed here can be used for any articuiated
rigid body system The overall research projéct is centered
around Aquarobot, a six-legged walking machine developed in
Japan. While the techniques and the computer programs
developed and used here are only a small part of the overall
effort of the Naval Postgraduate School Aquarobot project,

they represent critical first steps.

B. FUTURE USE OF CODE IN OTHER ROBOT DESIGNS

The codes discussed in this thesis and included in
entirety in Appendices A and B provide the basic classes
necessary to create any éotary lihk manipulator objects. The
C++ code (Appendix B) pfovides the core structure that any
design requires to produce a graphic simulator using Silicon
Graphics Iris systems. The CLOS version (Appendix A) includes
a camera class that can be used on any SUN workstation as well

as any Iris system which has been proVided with a LISP

compiler.
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C. FUTURE USE OF AQUAROBOT

Aquarobot’s underwater walking capability provide many
possibilities for its future use. Aside from its original
application to assist with the quality control and
construction supervision for tsunamai sea wall foundations,
other possibilities include its use at marinas to locate large
items dropped into the water, and at lakes or shallow beaches
when an underwater search is needed. Aquarobot could also be
helpful in detecting underwater cracks in piping such as
electric cables and gas lines.

Additionally, the Aquarobot concept presents many possible
uses in military applications. For example, an aquatic
walking machine provides an alternative method of mine
detection on the sea floor or in a surf zone. Upon completion
of an analysis of the feasibility of walking between land and
water, it may be found that this class of robots could be used
for beach inspection prior to an amphibious landing, thus

saving lives.

D. FUTURE RESEARCH IDEAS

This thesis describes the initial stage of the Aquarosbot
research project. There are a number of avenues of future
reasearch. Some of these areas include: simulating the
robot’s dynamics, modeling the joint motors, modeling

Aquarobot’s hinged foot pads, modeling the hydrodynamic
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effects of legged walking machines, improving the graphic
portion, and gait planning research.

The graphics area alone provides a number of areas of
research such as: providing collision detection and creating
an Aquarobot replica that is more faithful in appearance to
the actual robot. Both graphics codes currently display a
stick figure.

Aside from this thesis’ use of CLOS as executable
specification code for a C++ final version, CLOS could also be
used in incremental development of C++. This would take
advantage of CLOS’s superior debugging environment. Another
alternative in code production would be to use CLOS as the
main program and import C++ functions. This may in the end
prove to be the best way to construct an interactive

simulator, but this has yet to be investigated.

BE. SUMMARY

Robotics engineers have made impressive progress in
accomplishing the goal of producing an effective and practical
walking machine. Such a machine will permit society to
achieve functions and carry out missions not presently
possible. Also, they will improve current methnds of
performing tasks we do now but not very efficiently, or with
considerable danger to human workers.

The legged robot concept is in its infancy. It is vital

that we have simulation tools capable of providing an
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accurate model of complicated linkage mechanisms used for
manipulation and locomotion. These tools reduce the need for
a prototype vehicle in the early stages of development, and
provide a safe environment to attempt unusual and possibly
dangerous tests. Trying untested gaits, designs, etc. in a
simulation environment allows for better understanding of the
performance envelope and capabilities of a walking machine,
saves money, and potentially saves lives.

Simulation tools such as modeling algorithms, powerful
computer languages, and graphical capabilities enhance and
promote technology. There are many ways to build a simulation
model, but the use of the combination of kinematic modeling,
object oriented languages, and graphically equipped computer
systems offers a flexible and robust design method for both
large complex robots and simple one 1limb imitations of
organisms.

Aquarobot is a six-legged walking robot whose software
will be improved using this simulation model. Later
generations of legged machines may also benefit from similar
simulation studies. Agquarobot’s actions and stability in
various postures and with different gaits will be tested to
enhance its efficiency and design. Hopefully, through these
tests and improvements, legged machines will be able to
exploit their many advantages in areas where wheeled vehicles
are now used, as well as permitting access to areas where no

vehicle can now go.
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APPENDIX A - CLOS CODE

1link.cl

(defclass link (rigid-body)

({motion-limit-flag

tinicform nil

:raccessor motion-limit-flag)
(twist -angle

:initarg :twist-angle

:accessor twist-angle)
(link-length

:initarg :link-length

:accessor link-length)
(inboard-joint-angle

tinitarg :inboard-joint-angle

:accessor inboard-joint-angle)
(inboard-joint-displacement

:initarg :inboard-joint-displacement

:accessor inboard-joint-displacement)
(inboard-1link

:inftarg :inboard-link

:accessor inboard-link)
(A-matrix

:accessor A-matrix)))

(defclass rotary-link (link)
{(min-joint-angle
:initarg :min-joint-angle
;accessor min-joint-angle)
(max-joint-angle
:initarg :max-joint-angle
:accessor max-joint-angle)))

(defclass sliding-link (1link)
{{min-joint-displacament
:initarg :min-joint-displacement
:accessor min-joint-displacement)
(max-joint-displacement
:initarg :max-joint-displacement
1accessor max-joint-displacement}))
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aqua-link.cl

(defclass link0 (rotary-link)
(({twist-angle :initform 0)
(link-length :initform 37.5)
{inboard-joint-angle :initform 0)
(inbocard-joint-displacement :initform 0)
(min-joint-angle :initform (deg-to-rad -360))
(max-joint-angle :initform (deg-to-rad 160))
(node-1list :initform *((0 0 0 1) (0 0 0 1) (-37.5 0 0 1)))
(polygon-list :initform ’((1 2)))))

(defclass linkl (rotary-link)
((twist-angle :initform (deg-to-rad -90)})
{link-length :initform 20)
(inboard-joint-angle :initform 0)
(inboard-joint -displacement :initform 0)
{min-joint-angle :initform {deg-to-rad -60))
(max-joint-angle :initform (deg-to-rad 60))
(node-list :initform '((0 0 0 1) (0 0 0 1) (-20 0 O 1)}))
(polygon-list :initform ‘((1 2)})))

(defclass 1ink2 (rotary-link)
((twist-angle :initform 0)

({link-length :initform 50)
(inboard-joint-angle :inittorm (deg-to-rad 66.4))
(inboard-joint-displacement :initform 0)
(min-joint-angle :initform (deg-to-rad -~106.6))
(max-joint-angle :initform (deg-to-rad 73.4))
(node-list :initform "((0 0 0 1) (0 0 0 1) (-50 0 0 1)))
(polygon-list :init€orm ({1 21))))

(defclass link) (rotary-link)

({twist-angle :initform 0)

{link-length :initform 100)

(inboard-joint-angle :initform (deg-to-rad -156.4))
(inboard-joint-displacement :initform 0)

(min-joint-angle :initform (deg-to-rad -156.4))
(max-joint-angle :initform (deg-to-rad 23.6))

(node-list :initform ‘((0 0 0 1) (0 0 0 1) (-100 0 O 1))}
(polygon-list :initform ' ((1 2))}))})

{defmethod update-A-matrix ((link link))
(with-slots (twist-angle link-length inboard-joint-angle
inboard-joint-displacement A-matrix) link
(setf A-matrix (dh-matrix (cos inboard-joint-angle)
(sin inboard-joint-angle) (cos twist-angle) (sin twist-angle)
link-length inboard-joint-displacement))))

{defun deg-to-rad (angle) (* .0174532925199413295 angle))

(defmethod rotate ({link rotary-link) angle)
(setf (inboard-joint-angle link) angle)
(update-A-matrix link)
(setf (H-matrix link) (matrix-msultiply (M-matrix (inboard-link link))
(A-matrix link})}
(transform-node-1ist 1ink))

(defmethod rotate-l1ink ((link rotary-link) angle)
(cond ((> angle (max-joint-angle link))
(rotate link (max-joint-angle link))
(setf (motion-limit-flag link) t))
({< angle (min-joint-angle link))
(rotate link (min-joint-angle link))
(setf (motion-limit-flag link) t))
(t (rotate link angle) (setf (motion-limit-flag link) nil))))
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(defclass aqua-leg ()
(({leg-attachment-angle
:initarg :leg-attachment-angle
:accessor leg-attachment-angle)
(1ink0
:initform (make-instance ’1ink0)
:accessor 1link0)
(linkl
:initform (make-instance ‘linkl)
:accessor linkl1)
(1ink2
:initform (make-instance ’'link2)
:accessor link2)
ti1nk3
:inittorm (make-instance ‘1link3)
:accessor linkld)
(motion-complete-flag
:initform nil
:accessor motion-complete-flag)
(previous-toot-position
:initform nil
:accessor previous-foot-position)
(current -foot -position
sinitform nil
:accessor current-foot-position)))

(defmethod initialize-leg ((leg aqua-leg) (body aquarobot-body))

{setf (inboard-link (1ink0 leg)) body)
(setf (inboard-link (linkl leg)) (1link0 leg))
(setf {(inboard-link (link2 leg)) (linkl leg))
(setf (inboard-link (link) leg)) (link2 leg))
(rotate-link (1ink0 leg) (leg-attachment-angle leg))
(rotate-1ink (linkl leg) (inboard-joint-angle (linkl leg)))
(rotate-link (1ink2 leg) (inboard-joint-angle {link2 leg)))
(rotate-link (1link3 leg) (inboard-joint-angle (link3l leg)})
(setf (current-foot-position leg)

{ncar 3 (Lirst (transformed-node-list (link3 leg))))))

(defmethod take-picture ({camera camera) (leg aqua-leg))
(take-picture camera (linkl leg))
(take-picture camera (link2 leg))
(take-picture camera (1link3 leg)))

(defmethod move-incremental {((leg aqua-leg) increment-list)
(rotate-link (1link0 leg) (leg-attachment-angle leg))
(rotate-link (linkl leg)
(¢ (first increment-list) (inboard-joint-angle (linkl leg))))
(rotate~link (link2 leg)
(+ (second increment-list) (inboard-joint-angle (link2 leg))))
(rotate-link (1ink3l leg)
{+ {third increment-list) (inboard-joint-angle (link3 leg))})
(setf (previous-foot-position leg) {(current-foot-position leg))
(setf (current-foot-position leg)
(ncar 3 (first (transformed-node-list (link3 leg)})))
(setf (motion-complete-flag leg) (not (or (motion-limit-flag (1inkl leg))
{motion-limit-flag (link2 leg)) (motion-limit-flag (link) leg)))}))

{defmethod feasible-movep ((leg agqua-leg) allowable-sinkage allowable-slippage)
(and (<= (third (current~foot-position leg)) allowable-sinkage)
(or (minusp (third (current-foot-position leg)))
(minusp (third {(previous-foot-position leg)))
(<= (vector-length (vector-slippage leg)) allowable-slippage))))

(defmethod vector-slippage ((leg aqua-leg))

(vector-subtract (rest (reverse (previous-foot-position leg)))
(rest (reverse (current-foot-position leg})})))
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(defclass aquarobot-body (rigid-body)
{{node-1list
:initform ({0 0 0 1) (37.5 0 0 1) (18.75 32.48 0 1)
(-18.75 32.48 0 1) (-37.5 0 0 1) (-18.75 -32.48 0 1)
(18.75 -32.48 0 1) (37.5 0 -15 1)))
(polygon-list
sinitform *((1 2 3 4 S 6) (1 7)})
(H-matrix
:initform (homogeneous-transform 0 0 0 0 0 z-init)}})

(defclass aquarobor ()

{ (body
:initform (make-instance ’aquarobot-body)
:accessor body)

(legl
:injcform (make-instance ‘aqua-leg :leg-attachment-angle (deg-to-rad 0))
:accessor legl)

(leg2
rinitform (make-instance 'aqua-leg :leg-attachment-angle (deg-to-vad 60))
:accessor leg2)

(legd
:initform (make-instance ‘aqua-leg :leg-attachment-angle (deg-to-rad 120))
:accessor leg3)

({legé

:initform (make-instance 'aqua-leg :leg-attacihswent-angle (deg-to-rad 180))
raccessor legd)

(1egS
rinitform (make-instance ‘aqua-leg :leg-attachment-angle (deg-to-rad 240))
:accessor legS)

{legé

:initform (make-instance ‘aqua-leq :leg-attachment-angle (deg-to-rad 300))
raccessor legb)))

(detmethod initialize ({aqua aquarobot))
{transform-node-list (body aqua)}
(initialize-leg (legl aqua) (body aque))
(initialize-leg (leg2 aqua) (body aqua)}
(initialize-leg (leg) aqua) (body aqua))
{initialize-leg (legd aqua) (body aqua))
{initialize-leg (legS aqua) (body aqua))
(injitialize-leg (leg6 aqua) (body agua)))

(defun agua-picture (]
(setf aqua-1 (make-instance ’‘aquarocbot))
(initialize aqua-1l)
{setf camera-l1l (make-inatance °‘camera))
{create-camera-window camera-1)
(take-picture camera-1 aqua-1))

(defmethod take-picture ((camera camera) (aqua aquarcbot))
(take-picture camera (body aqua))
(cake-picture camera (legl aqua))
(take-picture camera (leg2 aqua))
(take-picture camera (legl aqua))
(take-picture camera {legd aquaj)
({take-picture camera (legS aqua))
(take-picture camera (leg6 aqua)})

{defun new-picture ()
(take-picture camera-1 agua-1))

({defconstant z-init -54.181866)

(defmethod move-incremental ((aqua aquarobot] increment-list)
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(move-incremental (body aqua) (first increment-list))
(move-incremental (legl aqua) (second increment-list})
(move-incremental (leg2 aqua) (third increment-list))
{(move-incremental (legl aqua) (fourth increment-list))
(move-incremental (legd aqua) (fifth increment-list))
{move-incrsmental (leg5 aqua) (sixth increment-list))
(move-incremental (leg§ aqua) (seventh increment-list)))

(defconstant null-move-list ' ((0 0 0 0 0 O0) (0 0 0) (0 O 0) (0 O O)
(00 0) (00 0) (00O0)))

(defmethod feasible-movep {(aqua aguarobot) allowable-sinkage

allowable-slippage)

(and (feasible-movep (legl aqua) allowable-sinkage allowable-slippage)
(feasible-movep (leg2 aqua) allowable-sinkage allowable-slippage)
(feasible-movep (legl aqua) allowable-sinkage allowable-slippage)
(feasible-movep (leg4 aqua) allowable-sinkage allowable-slippage)
(feasible-movep (legS aqua) allowable-sinkage allowable-slippage)
(feasible-movep (legé aqua) allowable-sinkage allowable-slippage)))
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(require :xcw)
(cw:initialize-common-windows)

(defclass camera (rigid-body)
((focal-langth
:accessor focal-length
rinitform 6)
(previous-point
:accessor pravious-point)
(camera-window
:accessor camera-window)
(H-matrix
:initform (homogeneous-transform .3 -.3 0 -300 -90 -90))
(inverse-H-matrix
:raccessor inverse-H-matrix
:initform ‘.nverse-H (homogeneous-transform .3 -.3 0 -300 -90 -90)))
(enlargement -factor
:accessor enlargement-factor
:initform 30)))

(defmethod create-camera-window ({(camera camera))
(setf (camera-window camera)
(cw:make-window-stream :borders 5

:left 500
:bottom 500
:width 300
theight 300
:title *aquarobot*
;activate-p t)))

(defmethod move ((camera camera) azimuth elevation roll x y 2z)
(setf (H-matrix camerz; (homogeneous-transform azimuth elevation roll xy z))
{(setf (inverse-H-matTix camera) (inverse-H (H-matrix camera))))

(defmethod take-picture ({(camera camera) (body rigid-body))
{dolist (polygon (polygon-list body))
(draw-polygon camera polygon (transformed-node-list body))))

(defmethod draw-polygon ({camera camera) polygon node-coord-list)
(let* ((starting-node-index (first polygon})

(remaining-node-indices (rest polygon))

(start-point-coord (nth starting-node-index node-coord-list)))
(transform-and-move-pen-to camera start-point-coord)
(doliet {node-index remaining-node-indices)

(trunsform-and-draw-to camera (nth node-index node-coord-list)))

(transform-and-draw-to camera start-point-coord))) ;closes polygon

{defmethod transform-and-move-pen-to {{camera camera) peint-in-earth-space)
(setf (previous-point camera)
(compute- a-window-coordinates camera point-in-earth-space)))

(defmethod transform-and-draw-to ((camera camera) point-in-earth-space)
(let {(to-point
{compute a-window-coordinates camera point-in-earth-space)})
(draw-1ine-in-camera-window camera (previous-point camera} to-point)
(setf (previous-point camera) to-point}})

{defmethod draw-line-in-camera-window ({(camera camera) start end)
(cw:draw-iine (camera-window camera)
(cw:make~position :x (first start) :y (second start))
(cw:make-position :x (first end) :y (second end})
:brush-width 0))

{defmethod compute-camera-window-coordinates ((camera camera)
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point-in-sarth-space}
({let* {{enlargement-factor (enlargement-factor camera))
{focal-length (focal-length camera))
(point-in-camera-space (post-multiply (inverse-H-matrix camera)
point-in-earth-space))

(x (first point-in-camera-space)} ;x axis is along optical axis
(y (second point-in-camera-space)) :y is out right side of camera
{z (third point-in-camera-space))) ;z is out bottom of camera

(L€ (>= x focal-length) : handles rear clipping
(list {+ (round (* enlargement-factor (/ (* focal-length y) x)))
150) ;to right in camera window

{+ 150 {(round (* enlargement-factor (/ (* focal-length (- z)) x)))))
;up in camera window
(list -1 -1))))
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load-files.cl

(load
(load
(load
(load
{load
(load
(load

‘camera.cl®)
*link.cl®)
*rigid-body.cl")
“robot-kinematics.cl®)
*aqua.cl®)
*aqua-leg.cl®)
‘aqua-link.cl®)
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(defclass rigid-body
()

((location

sinitarg :location

:accessor location)

{velocity

rinictarg :velocity

;accessor velocity)
(acceleration

:accessor acceleration)
(forces-and-torques

:accessor forces-and-torques)
(moments-of -inertia

:initarg :moments-of-inertia

raccessor moments-of-inertia)
(mass

rinitarg :mass

:acCcessor mass)

(node-lise

:initarg :node-list

:accessor node-list)
{polygon-list

:initarg :polygon-list

;accessor polygon-list)
(transformed-node-1ist

:accessor transformed-node-list)
(H-matrix

:accessor H-matrix)
(current-time

:accessor current-time)))

(defmethod move ((body rigid-body) azimuth elevation roll x y 2}
(setf (H-matrix body)
(homogeneous-transtorm azimuth elevation roll x Yy z))
(transform-node-1list body)

(update-position body))

(defmethod move-incremental ((body rigid-body) increment-list)
(setf (H-matrix body)
(matrix-multiply (H-matrix body) (homogeneous-transform

({tirst increment-list)
(second increment-list)
{third increment-1ist)
(fourth increment-1list)
(fifth increment-list)
(sixth increment-list))))

(transform-node-1list body)

(update-position body))

(defmethod get-delta-t ((body rigid-body))
(let* ((new-time (get-internal-real-time))}
(delta-t (/ (- new-time (current-time body)) 1000}))
(setf (current-time body) new-time)
delta-t)})

{defmethod start-timer ((body rigid-body))
(setf (current-time body) (get-internal-real-time)))

(defmethod update-rigid-body ((body rigid-body))
(let ((delta-t (get-delta-t body)})
(update-acceleration body)
(update-H-matrix body delta-t)
(transform-node-list body)
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(update-position body)
(update-velocity body delta-t)})

(defmethod update-acceleration ((body rigid-body))
(setf (acceleration body) :;(list u-dot v-dot w-dot p-dot q-dot r-det)
{multiple-value-bind
(Fx Fy Fz L M N uvwpqr Ix Iy Iz)
(values-list
(append
(forces-and-torques body) (velocity body) (moments-of-inertia body)) )
(list (+ (* v r}) (* -1 w q) (/ Fx (mass body))
(* *gravity* (first (third (H-matrix body)))))
(+# (* wp) (* -l ur) (/ Fy (mass body))
(* *gravity® (second (third (H-matrix body)})))
(+ (*uq) (* -1 v p) (/ Fz (mass body))
(* *gravity* (third (third (H-matrix body)))))
(/7 (¢ (* (- Iy I2) q r) L) Ix)
(/ (+ (* (- Iz Ix) ¢ p) M) 1ly)
(/ (+ (* (- Ix Iy) p q) N) Iz}))))

(defmethod update-velocity ((body rigid-body) delta-t)
(setf (velocity body)
(vector-add (velocity body)
(scalar-multiply delta-t {acceleration body)))))

(defmethod update-H-matrix (({body rigid-body) delta-t)
(setf (H-matrix body)

(matrix-multiply

(H-matrix body) (homogeneous-transform
(* delta-t (sixth (velocity body)))
(* delta-t (fifth (velocity body)}))
(* delta-t (fourth (velocity body)))
(* delta-t (first (velocity body)))
{* delta-t (second (velocity body)))
(* delta-t (third (velocity body)))})))

(defmethod transform-node-list ((body rigid-body})
(setf (transformed-node-list body)
(mapcar #'(lambda (node-location)
(post-multiply (H-matrix body) node-location))
(node-1list body))))

(defmethod update-position ((kody rigid-body))
{setf (location body) (ncar 3 (first (transformed-node-list body)))))

(defmethod get-node-polygon-list ((body rigid-body})
{list (transformed-node-list body) (polygon-list body)})

(defconstant *gravity* 32.218S)
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{defun transpose (A)
(cond ((null (cdr A)) (mapcar ‘list (car A)))
(t {mapcar ‘cons {car A) (transpose (cdr A}}))))

(defun dot-product (x y) ;A vecto- is a list of numerical atoms.
(apply ‘+ (mapcar '* x y))} ;A matrix is a list of row lists.

(defun vector-length (x) (sqrt (dot-product x x)))

(defun post-multiply (M x)
tcond ((null (cdr M)) (list (dot-product (car M) x))}
(t (cons (dot-product (car M) x) (post-multiply (cdr M) x)))))

(defun pre-multiply (x M)
(post-multiply (transpose M) x))

(defun matrix-multiply (A B)
(cond ((null (edr A)) (list (pre-multiply (car A) B)))
(t (cons {pre-multiply (car A) B) (matrix-multiply (cdr A) 8)))))

(defun chain-multiply (L)
{cond ((null (cddr L)) (matrix-multiply (eval (car L)) (eval (cadr L))))
(t (matrix-multiply (eval (car L)} (chain-multiply (cdr L))))))

(defun cycle-left (L) (mapcar ‘row-cycle-left L))
{defun row-cycle-left (R) (append (¢~ R) {list {car R)}))
(defun cycle-up (M) (append (cdr M) (list (car M}}))

{defun uni’ -vector (one-column length)
{do ((n length (1- n))
(R nil (cons (cond ({= one-column n) 1) (t 0)) R)))
{{zerop n) R)})

(defun unit-matrix (n)
{do ({row-pumber n (1~ row-number))
(I nil {(cons (unit-vector row-number n} I1)))
({zerop row-number) I)})

(defun concat-matrix (A B)
(cond ((null A) B)
(t {(cons (append (car A) {(car B)) (concat-matrix (c¢dr A) (cdr B})))})
(defun augment (A) {concat-matrix A (unit-matrix (length A))))
(defun normalize-row (R) (scalar-multiply (/ 1.0 (car R)) R))
(defun scalar-multiply (a x)
{(cond ((null x) nil)
(t (cons (* a (car x)) (scalar-multiply a (cdr x})}1)}
(defun solve-first-column (M)
(do* ((L1 M (ecdr L1))
(L2 (normalize-row (car M)))
(L) (list L2) {(cons (vector-add (car L1}
(scalar-multiply (- (caar L1)) L2}) L3)))
{{null (edr L1)) (reverse L3))))
(defun vector-add (x y) (mapcar ‘s X y))
(defun -rector-subtract (x y) (mapcar '- x y))

(defun square-car (M)
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(do ((m (length M))
(L1 M (cdr L1))
(L2 nil (cons (ncar m (car L1)) L2)))
{((null L1} (reverse L2)))})

{defun ncdr (n L) (cond ((zexop n) L} (t (cdr (ncdr (1- n) L))}))

(defun ncar (n L} (cond ((zerop n) nil)
{t (cons (car L) (ncar (1- n) (edr L))))))

{defun nmax-car-first (n L)
(append (max-car-first (ncar n L)) (nedr n L)))

(defun matrix-inverse (M)
(do ((M1 (max-car-first (augment M))
(cond ((null M1) nil)
(t (nmax-car-first n (cycle-left (cycle-up M1l))))))
(n (1- (length M)) (1- a)))

((or (minusp n) (null M1)) (cond ((null M1) nil) (t (square-car M1)))
(setq M1 (cond ((zerop (caar M1)} nil) (t (solve-first-column M1)))))

(defun max-car-first (L)
(cond ((null (ecdr L)) L)
(t (if (> (abe (caar L)) (abs (caar (max-car-first (cdr L})))})) L
(append (max-car-first (cdr L)) (list (car L)))))))

(defun dh-matrix (cosrotate sinrotate costwist sintwist lemgth translate)
(1ist (list cosrzotate (-~ (* costwist sinrotate))
(* sintwist sinrotats) (°®* length coerotate))
(1ist sinrotate (* costwist cosrotate)
(- (* sintwist cosrotate)) (* length sinrotate))
(list 0. sintwist costwist translate) (1list 0. 0. 0. 1.)))

(defun homogenecus-transform (azimuth elevation roll x y 3)
(rotation-and-translation (sin agisuth) (cos szimuth) (sin elevation)
{(cos elevation) (sin roll) (coe roll) x y z)})

(defun rotation-and-translation (spsi cpei sth cth sphi cphi x y z)
(1ist (list (* cpsi cth) (- (* cpei sth sphi) (* spsi cphi))
(s (* cpsi sth cphi) (® epsi sphi)) x)
(l1ist (* spai cth) (+ (* cpesi cphi) (* spei sth sphi))
(- (* spsi sth cphi) (° cpsi sphi)) y)
(list (- sth) (* cth sphi) (* cth cphi) z}
(lise 0. 0. 0. 1.}))

(defun inverse-H (H)
(let* ((minus-~P (list (- (fourth (first H)))

(- (fourth (second R)))
(~ (fourth (third X)))))

(inverse-R (transpose (square-car (reverse (rest (reverse NH))))}))

(inverse-P (post-multiply inverse-R minus-P)))

(append (concat-matrix inverse-R (transpose (list inverse-P)})

(list (liet 0 0 0 1)))))
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APPENDIX B - C++ CODE

bot.h 1

// PERRN AN O RN E RN ANNE N R R P RO R A AN PR R A N AN RPN OREACARA RN TRSARNERSY
// TFILENAME: bot.h

// PURPOSE: defines constants and functions used int bot.C
// NOTE: This is an IRIS 3D program written in C++

// AUTHOR: § L Davidson

// DATE: S January 1993

/, RO BNPNERE RN ORI R ERNNAT P ON O RGN NN CRNRER RN R P RORNORRRDRAGORS

/! provides constants for menu processing options
ddefine CAMERA b}
#define ABOVE 2
ddefine BEHRIWD 3
#define RTSIDE 4
ddefine LTSIDE -]
ddefine FILEREAD &
fdefine KEYBDREAD ?
ddefine RESETFILE 0
ddefine RESET 14
fdefine EXIT 18

4 define NEARCLIPPING 10.0 // planes defined
ddefine FARCLIPPING 1023.0

ddefine VIEWX = 0.0 /* location of the viewpoinr */

fdefine VIEWY = 40.0

{define VIEWZ = 400.0

fdefine REFX = 0.0 /* location of the robot */

fdefine REFY = 0.0

fdefine REFZ = -200.0

long makethemenus ()

static float rfx:/* reference point on in the x direction */
static flost rfy;/* reference point on in the y direction */
static float rfz:/* reference point on in the z direction */
static float vx; /* view point on in the x direction */
static float vy: /* view point on in the y direction */
static float vz: /* view point on in the 2 direction */

double deltal,delta2,deltal;
double delaz,delel,delrol,delx,dely,delz;

void processmenuhit (long hititem);
void inicislize(): // initializes graphics layout
void loadunit(): // & unit matrix used in rotation/translation

void projectionandviewvingmatrix(flost wx, float vy,float vz, flost zefx,float refy, flost ref
e);

void buildnonmovingviewingmatrix(float wx,flost vy,flost vz, float refx,flost refy,float re
fz):

void drswaqua (double*, double®, double *, double *, double *,
double *, double °*): // includes all legs snd body
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// REARSPERINNE AN RO R SRR P RRR AN E RO RO AN RO NN RRPRANP PP RIERB OISR ARNRESS

// FILENAME: bot.C
// PURPOSE: This file makes a stick aguarobot graphics

1! interactive dasign
// It utilizes Kinematic functions to determine xy:
1/ coordinates

// CONTAINS: functions shown in bot.h

// NOTE: This is and IRIS 3D progrsm written in C++
// AUTHOR: S L Davidson

// DATE: 15 February 1983

// PRI R AR PR R R RS RNRRO RPN ERASSRRRABR RO OO NEPRARPRAGORNOR SRR SRY

¥include "gl.h" // graphics library
#include “device.h"™ // graphics library file
t#include “"bot.h" // declaration file
tinclude <stdio.h> // C++ library

#include "Link.R"

f#include "RigidBody.H"

¢include "MatrixMy.H"

finclude “AquarobotBody.H"

tinclude "Kinematics.C"

#include “Aqualeg.RH"

main()
{

// value returned from the event queue
short valuve:

long mainmenu:

long hititem;

FILE *ifp;
itp =« fopen(“"bot.dat™,"r");

// initislize the IRIS system
initialize(};

// Create Pop Up Menus
mainmenu = makethemenus():

// makes the robot from its pieces
AquarobotBody aquabody:

Aqualeg legl (agquabody, 0.0);
Aqualeg leg2(aquabody, 60.0);
Aqualeg leg3(agquabody,120.0);
Aqualeg legd (agquabody, 180.0);
Aqualeg legSiaguabody,240.0};
Aqualeg leg6 (aquabody, 300.0);

Return_Coordinates coord:
Passing_Items pass:
Next_Motion trans;

int ans:

ans = 0;

pass.legnum = 9;

coord = FindPositions(aquabody, legl, leg2, leg3d, legd, legs,

trans = TransferToGait {coord, asquabody):

while (TRUE)
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/7 do we have something on the event queve?
if (qrest ()
¢

switch (qread (§value))
{
case REDRAN:

rashapeviewport () ;
break:;

case MENUBUTTOM:

it (value == ))
{
hititem = dopup (meinmenu):
processmenuhit (hititem) ;
)

break;

//  queue used for calling the gait slgorithm
case AKEY:
trans = Gait Algorithm{trans):

delaz = trans.bodymotion(0):
delel = trans.bodymotion[l]):
delrol = trans.bodymotion|2):
delx = trans.bodymotion(3):
dely =~ trans.bodymotionld):
del: = trans.bodymotion[$);

body .MoveIncr al(delaz,delel delrcl,delx,dely,dels);

legl.MovelIncr &l (aquabody, trans.leglmotion(0),
trans.leglmotion(1),trans.legimotion(2));

1892 .Movelney al (aquabody, trans.leg2motion(0),
trans.leg2motion{l],trans.leg2motion(2]);

leg3.Movelncy al (agquabody, tzans. legdmotion{0]),
trans.leg3motion(1l),trans.legImotion(2)):

leg4 .MoveIncremental (aquabody, trans.leg4motion(0],
trans.legémotion(l),trans.legémotion([2]):

leg5.Movelncr al (squabody, trans.legimotion(0),
trans.legSmotion(l],trans.legimotion{2)):
legf.Movelncr al (squabody, trans.legémotion(0),

trans.legémotion(l), trans.legémotion(2));

coord = FindPositions(aquabody, legl, 1eg2, 1693, legd, 1egS, 1eg6) ;

trans = TransferToGait (coord, aquabody) ;
break:

// resds incr al chang from a file
case PKREY:
printf (“\n Reading file motion\n"}:
pass = File_Use(ifp, aquabody, legl, leg2, leg),
legd, 1e9S, legé) :
printf (“%d, M1f, V1, \1f\n",pass.legnum,
pass.dell,pass.del2,pass.deld);
pass.legnum = §;

coord = FindPositions (aquabody, legl, 192, leg3,

legd. leg$, legé);
trans = TransferToGait (coord, aquabody) :
break;
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}

case OKBRY:
rewind (ifp) ;
bresk;
defsult:
break:;
) // end switch on event queve item
) /7 endif qrest()
color(BLUR); // background coler
clesar():

// turn on Z-buffering
sbuffer (TRUE) ;

// clear the z-buffer
zclear():

buildnonmovingviewingmetrix (vx, vy, vz, rfx, rfy, z€2);
dravaqua { {coord.bodyc), (coord.leglc), (coord. leg2c), (coord.leglc),
{coord. legdéc), (coozd. legSc), (coord.legéec)):

// turn z-butfering off
tbuffer (FALSE) ;

// change the buffers
swepbufters();

qenter (AKEY, 1) ;
)

// end of main

[] 400008000000 0000000AieteRtenttdt st nedstettiontas

// FUNCTION: INITIALIZE()

[/ ®0000 000000000000 080 000000000000 aatttRvitttesndnnd

void initialize()

// set up the preferred aspect ratio
keepaspect (XMAXSCREEN+1, YMAXSCREEN+1) ;

// set up window size
pretposition(700.0,1200.0,200.0,700.0);

// open & window for the program
winopen ("AquaRobot”) ;

// make 8 title
wintitle ("AquaRobot”):

// put the IRIS intc double buffer mode
doublebuffer():
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/{ configure the IRIS (means use the sbove commend settings)
geontigl);

// detine acceptable gqueves
qdevice (REDRAW) ;

qQdevice (AKEY) ;

qdevice (PREY) ;

qdavice (RRRY) ;

qdevice (MENUBUTTON) ;

// initial location of viewpoint (csmera eye)
vx = 0,0;

vy = 40.0;
vz = 400.0;

// initial locstion of zobot foot pads
rfx = 0.0;

rty = 0.0;

rfz = -200.0:

// COORBECEBEPORRERNAPARSEEOREEARAIRALRVRAANPRNRCERAENCOARNARNOETRES
// Function Make_the_Menus

I/ (22222422 32 22 R it e A e R 2 ISR R 222 2222222 2222223222223

long makethemenus ()
f

long topmenu;
long cameramenu;

// camera views

cameramgnu = newpup():

addtopup (Cameramenu, “"Camera View §t *});

addtopup (camszamenu, "ABOVE $x2 | BENIND $x3~):
sddtopup (camezamenu, "RIGNT SIDE x4 | LEFT SIDE &x57);

// build the top level menu

topmenu= defpup(®"Roll Off Side St! Camera txl Sm|
FileRead tx6 iResetFile \xd|XKeybdRead $x7|
Reset $x14) Exit $x13",cameramenu):

// return the name of this menu
return (topmenu) ;

,’ L AAAARAAS A A A 2 A X AT I A R I R R R RS2 2222222222 2]
// Function Process_Menu_Rit
// PRERAOEPREERGERRNVARRNENERARNARARERANRORRASAARRASGRPRSORCTOIRNOGRES

void processmenuhit (long hititem)
{
switch (hititem)
{

case CAMERA:
break:
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case ABOVE:
vz = 0.0:
vy = 300.0;
v = 0.0;
rgx = 0.0;
rfy = 0.0;
rfa = 0.0;
break;

case BEMIND:
vx = 0.0;
vy = $0.0:
vz = 250.0;
rfx = 0.0:
rty = 30.0;
rfz = -200.0;
break:

case RISIDE:
wvx = 250.0:
vy = 50.0:
vz = 0.0;
rfx = -200.0;
rfy = 50.0;
rfz = 0.0;
bresk;

case LTSIDE:
vx = -250.0:
vy = 30.0:
v = 0.0:
rfx = 0.0;
rty = 0.0:
rfz = ~200.0;
break;

case FILEREAD:
qenter (PKEY, 1):
braak:

case RESETFILE:
qenter (RKEY, 1)

break:

case RESET:
vx = 0.0;
vy = 40.0;
vz = 400.0:
rfx = 0.0;
rfy = 0.0;
rfr = -211.0;
break:

case EXIT:
exit (0)
bresk:

} // End Switch
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]/ S0 R0 0000ttt ettt Rttt ttNtatstettatnataetstoccnenes

// FUNCTION: BUILDNONMOVINGVIEWINGMATRIX
// PURPOSE: use with objects that are in the same coordinate
1 system and aren’t moving with continuous

123 rotations/transletions/scalings
// X I R I R Y R R IS LSRR AR SR A2 222222 2 )

void buildnonmovingviewingmatrix(flost vx,float vy, float vz,
float refx, flost refy,float ref:z)
{
loadunit () :

projectionandviewingmatrix(vx, vy, vz, refx, rety, refz) ;

// R0 EP NP RO RPN PSRN PR ARRRERNPENONOOPRRORRRRORRORROERYS

// FUNCTION: PROJECTIONANDVIEWINGMATRIX

// PURPOSE: provides the projection and viewing matrix

// (22422222 22 222 X222 A2 222 R 222222 a2 222222222222

void projectionandviewingmatrix(floast vx,float vy, float vz,float refx,float refy,flost
z)

// perspective projection 3D for the world coord sys

// the near and far values are distances from the viewer
// to the near and far clipping planes,

// ¥e are at (vx,vy,vz) and looking towards

// the center point of the object..

// (towards (refx, refy,refz)).

perspective (450,1.25, NEARCLIPPING, FARCLIPPING) ;
lookat (vx, vy, vz, refx, refy, refz, 0):

}

// L Z R AR Al R I R R XA R R R A A A R R R R R AR A A a2 2222 X2 D]
// FUNCTION: LOADUNIT

// PURPOSE: this routine loads a unit matrix onto the top

1/ of the stack
// L2222 R 2R AR AR R R R AR AR R RSS2 22222 X )

void losdunit ()
{
static float wun(4)i{4) = { 1.0, 0.0,

0.0, 0.0,
¢.e, 1.0, C.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0 };

loadmatrix(un);

// LR A AR R RS R R R S R R R R A R R R R R AR RN RS RS R SRR RN ¥}
// FUNCTION: AQUA DRAWING
// PURPOSE: draws the robot st coordinates provided

[/ S0 000 0000000000000t tRNacttetttonessvtadesaneaRdtnss

void drswaqua (double *bodyc, double *leglc, double *leg2c, double
*leg3c, double *legd4c, double °*leg5Sc, double *legéc)

{

color (WHITE) ;

linewidth(J);
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// +x to right, +y up, +z out of screen ->for graphics &
// 4x out of legl, 4y out of screan, -t down->for kinematics ]
/7 x z y

move (bodyc (3], -bodyc (5], bodyc(4)) ;

draw (bodyc (6], -bodye [8),bodyc (7)) ; )

draw (bodyc (9], -bodyc [11],bodyc[10))
draw (bodyc(12]), -bodyc {14].bodyc[13]) ;
draw(bodyc(15), -bodyc[17]),bodye[16)) ;
draw (bodyc (18], ~bodyc [20], bodyc [19])) ;
draw {(bodyc3), ~bodye [5]),bodyc{4));

/! draws a line from body center to legl joint 1
linewidth(l);
move (bodyc [0), ~bodye (2], bodyc (1)) ; ’
draw(bodyc (3], -bodyc [5),bodyc(4)) ;

// dxaws legl
color (YELLOW) ;
linewidth(5):
1/ x z y
move (leglc (0], ~-leglc[2), leglc(l])):
draw(leglc(3),-leglc(S), leglc(4)); )
draw(leglc(6],-leglc(8],leglc(7));
draw{legic(9],-leglci{il), legic(io));

// draws leg2
calor (GREEN) ;
linewidth(S);
move {1e92cl0], -leg2c(2), leg2c(l)}));
draw(le92c(3),~leg2c(5),leg2c(4)):
draw(leg2c(6]),-leg2c(8), leg2c(7)); ) .
draw(leg2c(9),~leg2c(11),leg2c(10]);

// draws leg3
color (GREEN) ;
linewidth (%) ;
move (leg3c(0], -leg3c(2), legicil]));
draw(leg3c(3),-legic(5},legl3c(4]);
draw({leg3c(6),~leg3c(8),leg3ci(?));
draw(leg3c(9), ~leg3c(11], 1eg3c(10]); '

// draws leg4
color (GREEN) ;
linewidth(S);
move (legdc (0], ~legdc (2], legdc(1]};
draw{legdci3}, -legdc(5), legdci(4));
draw(legdc(6),-legdc(8), leglc(7}));
drav(legdclS),-loqlcllll.1oglcl10]):

// draws leg$
color (GREEN) ;
linewidth (5);
move (legSc(0), -legSc(2), legSc (1)) ;
drav(leg5c(3), -legSc(5), legSci4));
drav(legSc(6),-legSc(8), legSciT});
draw(leg5c(9},-legSc(1l),1eg%c(10]):

// draws legé ’
color (GREEN) ;
linewidth(S);
move (legéc (0}, ~legbc{2), legbc(l]);
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roy ¢
dravilegbe(d], ~leagbe (8], legbela)y

drawilegbcl6), -lagbc ), legbc i),
draw(lagbc{9), ~legbc{1l), legbcliO))
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// X I X2 RA AR 222 R 22 A2 A AR R R ARttt sl d)
// FILENAME: Aqualeg.H

// PURPOSE: Declarzations for Aqualeg class

7/

// AUTHOR: $ L Davidson

// DATE: 17 Feb 93

// COMMENTS: Definition of Aqualeg class and functions thst

// apply to this class

,, CERRE R SRR A PRGN ERRORE RN AR E RO NP AUNRD PR NN O NP RGN RINROTRRGSOROERS

tifndef H_AQUALEG
ddefine H_AQUALEG

tinclude <stdio.h>
f#include “AquarobotBody.H"
¢include "Link.H"
finclude *"Link0 K"
¢#include *"Linkl.H"
finclude "Link2.K"
f#include “Link3 . NH*

class Aqualeg
{
public:

// these dependent objects are instantiated
Link0 *1ink0:
Linkl *linkl:
Link2 *1link2:
Link3 *1ink3:

// the flag is set to 1 if the motion is completed without
// reaching any link limits
int motion_complete_flag:

// the flag is set to 1 if the leg is on the ground
int leg support_flag:

// the angle off of leg one where the leg is attachec to
// the body
double leg_attachment_sngle:

Aqualeg (AquarobotBodys, double); // constructor and initializer

~Aqualegi); // destructor

void Movelncremental (AquarobotBody &, double deltal, double deltas2,
double deltal):

double GetlegAttschmentAngle() | return leg_attachment_angle;)

int GetMotionCompleteFlag() ( return motion_complete_flag:}

void SetLegAttachmentAngle (double sngle) {leg_attachment_angle = angle;]}
void SetMotionCompleteFlag(int flag) (motion_complete_flag = flag:}

int GetLegSupportFlag() | return leg_support_flag:}

void SetlegSupportFleg(int flaqg) (leg_support_flag = flag:)

b
fendif
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,/ SRR AN SN RN AR RN RS R AR E RN QR E O RGN AR AN G R E R CCPAR R RN CARARAAAREIREP YOS
// FILENAME: Aqualeg.C

// PURPOSE: Implementation of Aqualeg class

// CONTAINS: Aqualeg()

X

1/ Initislize (Aqualegé, AquarobotBodyé)
/7 TakePicture (Camerst, Aqualegé)
// MovelIncremental (Aqualegé, deltsl,delta2,delta3l)

// AUTHOR: S L Davidson
// DATE: 17 redb 93

// LA AR S A A Al A I T L R T S N R R IS

tinclude "Aqualeg.H"

// PERNER RS SR IR RN R P ARSI RO R AR NN AN I AN OR OO RS RRCIRIRNRERERDanbREY

// FUNCTION: ~Aqualeg()
// PURPOSE: destructor of Aqualeg class

// LAA A A S A R A L A e Y I TR RN R R R R R R R eIy

Aqualeg::~Agqualeg () )
{

jelete 1inko;

delete linkl;

delete 1ink2:;

delete 1ink3;
}

// '.'..!"'....tt""".".."'...t'."..'Qttt.....'."..""

// FILENAME: Aqualag )
// PURPOSE: constructor of Aqualeg class

// RETURNS: Aqualeg class with values

,/ LA AR A A d d a Y T Y N Y R R I ™

Aqualeg: :Aqualeq (AquarobotBody tbody, double angle)
{

motion_complete_fleg = 1: // initializes flag value
SetlLegAttachmantingle (angle)

1ink0 = new Linko; ) %
link] = new Linkl:

1ink2 = new LinkZ2;
1ink3 = new Link3;

// initial link values initialized

// temp matrix adds in the T_matrix needed for the physical )
// attschment of the leg to the body
matyrix temp;

// updstes the Transformation matrix from body center to the
// leg attschment point
temp.UpdateTHat rix (Get LegAttachmentAngle(),0.,0.,0.);
temp = *body.H_matrix * temp:
1ink0->Rotastelink (Stemp , 1ink0->Get InboardJointAngle()):

1ink1->RotateLink (1ink0->H_matrix, linkl->GetInboardJointAngle()}:
link2->Rotatelink (link1->H_matrix, 1ink2->Get InboardJointAngle ()):
link3->RotateLink (1ink2->K_matrix, 1ink3->GetInboardJointAngle()):

[] NN 000NN R NN NN E RN NSRRIt RREeRNOINNEIRSESRARRRTY

// FILENAME: Movelncremental

// PURFOSE: calculate the new link values as a leg rotates

// RETURNS: rotated link’s nev values are placed in the

/7 respective leg’'s slots »

J] 2000ttt a0t NNttt et ettt a et neeetnsatetdassnattasnsss
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vold Aqualeq::MovelIncremental {AquarobotBody &body,double deltal,
double delts2,double deltal)
{
double b;

// =et all limit flags to zero
"link1->SetMotionLimitFlag(0):
1ink2->SetMotionLimitFlag (0);
link3->SetMotionLimitFlag(0);

J/ temp matrix adds in the T matrix needed for the physical
// attachment of the leg to the body

matrix temp;

temp.UpdateTMatrix (GetLegAttachmentangle(),0.,0.,0.);

temp = *body.H_matrix * temp:
link0->RotateLink (Ctemp, 1ink0~>Get InboardJointAngle());

b = deltal 4 linkl->GetInboardJointAngle();
linkl->Set1inboardJointAngle(b): ,
link1l->Rotateblink (1ink0->H_matrix, 1linkl->GetInboardJuintAngle());

b = delta? + link2->GetInboardJointAngle():
link2->SetInboardJointAngle(b);
1inx2->Rotete ({1ink1->H_matrix,link2->GetInboardJointAngle()):

b = delta3d + 1ink3->GetInboardJointAngle():;
link3->SetInboardJointAngle(b);
link3->Rotatelink (1ink2~>H_matrix, 1ink3->Get InboardJointAngle());
// the motion_complete_flag is set to 1 if the
// motion_limit_flags on all legs are not set
N SetMotionCompleteFrlag(! (linkl->GetliotionLimitFlag() ||
1ink2->GetMotionLimitFlag() 1] link3->GetMotionLimitFlag())):

i // prints the status of the requested motion and prints which
// 1ink’s motion_limit_flag was set (if any).
if (GetMotionCompleteFlag(; == 0)
{printf ("Motion Not Completed\n®):
{f (link1->GetMotionLimitFlag() == 1)
printf("link 1 limit exceeded\n®);
if (1ink2->GetMotionLimitFlag() == 1)
. printf(”link 2 limit exceeded\n”):
if (1ink3->GetMotionLimitFlag() == 1)
printf(liak 3 limit exceeded\n”);
)
elae printf ("Motion completed\n™):
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,/ VRN CLENOVRERNE O PP RN N RO RO C R AR RR O RAOORASARRNSPRERRRNEROORRORRRY
// PILEMAME: AquarobotBody.M

// PURPOSE: Declaration of AquarobotBody class

7/ Subclass of Rigidmody class

// AUTHOR: § L Davidson

// DATE: 20 Sep 92

/, LAAA A A AR A2 A2 A R 2 a2 2 R A A a2 22222 122 1222212277 )

difndet H_AQUAROBOTEODY
f#define R_AQUAROBOTBODY

dinclude <stdio.h>

tinclude "RigidBody.H*

#include "MatrixMy.R"

class AquarcbotBody : public RigidBody

{

public:

metrix *body_list: // defines the size of the body vsing coordinates
double azimuth, elevation, roll:

AquarobotBody () : // constructor
void MoveIncremental (double,dovble, double, double, double, double):

):
fendit
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/’ SR ERA SOOI RNORONRAORRNACRRIR RGP RRPERANSESPRRAPRNGOSORAOROORRNED

/! TILENAME: AquarobotBody.C

{// PURPOSE: Implemsntation of the Aqu:oboaody cless
// CONTAINS: initialiszes the body form

// AUTHOR: § L Davidson

// DATE: 17 Nov 92

// PRGNSR RE D RRRANOARERPNRGRRRNRAARRANEOSNARNRRERRORONRRAdORONSRS

f#include "AquarobotBody.R”

II SRR RRRPREECEDACRCRORAIIPRRRAGNRGRRAGN RPN RdadRttodosRddoodtade

/7 TORCTION: AguarobotBody ()
// PURPOSE: constructor of the AquarobotBody class
// RETURNS: AquarobotBody class with values

// CRCRARENERCONR NP ORGSR NEARORNRARNERACANNAQEEPIRRR RN RNEROCOREAEGRRRARS

AquarobotBody: :AquarobotBody ()
i
// esch row is & body point (x,y,z)

// the first (0 zow) is the body's physicsl centez, and the rest

// are the #ix points of the body
body_list = nev metrix(7,4,0.0):

// the body’s coordinates are defined centered at 0,0,0
body_list->val(0,0) = 0.; body_list->val(0,1) = O.;
body_list~>val(0,2) = 0.: body_list->val(0,3) = 1.;
body_list->val(l,0) = 37.5; body list->valil,1) = 0.;

body_list->val(l,2) = 0.: body_list->val(1,3) = 1.:

body_. 11't->v.1(2 0) 18.75; body_list->wvsl(2,1) = 32.49;
body_list->vsl(2,2) 0.; body_list->val(2,3) = 1.;

body list->vsl(3,0) ~10.7S;: body_list->val(3,1) = 32.48;
body__lht->n1(3,2) 0.; body_list->wal(3,3) = 1.;
body_list->val(4,0) = -37.8; body list->val(4,1) = 0.;

body_list->val(4,2)
body list~>val(s,0)
body_ _1ist->val(s,2)
body_list->val (6, 0)
body_list->vel (§,2)

0.; body_list->vali4,d) = 1.;
=18.75;: body_list->val($,1) = -32.48;
0.: body_list->val(s,3) = 1.;
18.75; body_list->wel(f,1) ~ -32.49;
.: body_list->val(¢,3) = 1.;

// defines the initial location of the body using the

// R-matriz the inputs to the function are:

1/ (azimuth, elevation, roll, x, y, z)
R_matrizx->HomogeneousTransform(0.,0.,0.,0.,0., ~54.1819);

// moves the body coordinstes to the initisl locstion desired
body_list->TransformList (*H_metrix, *body_list);

// PRSP RNEENREROONRE RN PREND PR CAGGRECCRARERACRAANRERRORQNCOIDRS
// TUNCTION: Movelncremental

/4 PURPOSE: the body is moved based upon commanded incremantsl
7/ degrees of change that are passed in

,/ CRERDORICRNR RO NP RO GENORERONACOEPROREROEPREONRRONCCRRINPNRORES

void AquarobotBody: :Movelncremental (double delaz, double delel,
double delrol, double delx,double dely, double delx)

double az, @1, ro, X, ¥y,

az = azimuth + delas;

el = elevation + delel:

ro = roll 4 delrol;

x = body_1ist->val(0,0) + delx;
y = body_list->val(0,1) + dely:
1 = body_list->val(0,2) + delr;
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// only changes sre used below aince body_list is st current position
¥_matrix->H Transform{delas, delel, delrol, delx, dely, dels):
body_list->Tranaformlist (*N_métrix, *body_list) ;

// puts all info in N_metrix
H_metrix->HomogeneocusTransform(sz,el, xo,x,y,3);

}
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// CEARRROPBRRNNREGRCERNRNRNANRONCLRNNANRCACAPONRBRREROPORNSES

// FILENAME: Kinematics.C
// PURPOSE: to determine positions(x,y,z) from the N_matrix

17 ! to resd from a file the new link angle changes
// and update the sppropiate leg/link valuves
/7 t to pass items to the gait function

// AUTHOR: & L Davidson
// DATE: 15 February 1993

// CRREERP RN C O R RNOR RO RO ERNPE DR BRI RANOREORORRRRNRRNIORNRSS

finclude <math.h>

#include <stdlib.h>
#include <stdio.h>
#include "MatrixMy.R"
#include "Agqualeg.H"
#include "AquarobotBody.N"
#include "Link.R"

ddefine GROUNDELEVATION 0.0

// structure designed to receive file input

struct Passing_ltems {
int legnum;
int body:
double dell;
double del2:
double dell;
double deld:
double del$;
double delé:

)2

// structure recieves next desired robot motion from gait
// planning functions
struct Next Motion {

// desired joint increment values returned from the gait function
double bodymotion{é]:
double leglmotion(3]:
double leg2motion(3}:
double leg3imotion(3):
double legdmotion(l):
double legSmotion(3):
double legémotion(3);

// ectusl position status values sent to gait function
double leg_contact_flagi6):
double joint_limit flagli8):
double foot_1_coord{3):
double foot_2 ceord{d);
double foot_3_coord{3):
doable foot_4_coordl3):
double foot_S_coord(3);
double toot_#_coord[3):
double body_center_coord(§):

// structure designed to consolidate the xy: coordinates of the robot
struct Return_Coordinates |

double bodyec{21]);

double leglcil2):

105




Kinematics.C 2

double leg2cfli2]}:

double leg3ci{l2);

double legéc(l12]):

double legsc[12):

double legécll2);

int motion_limit_flagll8):
int leg_ uupport flagi€):

i:

// xyz coordinates are determined from the H_mstrix and
// return the Cartesian coordinstes using the Return_Coordinates structure
Return_Coordinates FindPositions (AquarobotBody tbody, Aqualeg Glegl,
Aqualeg 6leg2,Aqualeg &legld, Aqueleg ilegd, Aqualeg &legS,
Aqualeg &legé)

Return_Coordinates *rc:

rc = new Return_Coordinates:

// body center coordinates

re->bodyc(0] = body.body_list->val(0,0):
re->bodyc(1) = body. body 1ist->val{0,1):
rc->bodyc(2) = body.body_list->val(0,2):
// body points to draw

re->bodyc(3) = body.body_list->val(l,0);
rc->bodyc (4] = body body 1ist->valtl,1);
re->bodyc(S) = body.body_list->val(l,2):
re->bodyc{6] = body.body_list->val(2,0):
re->bodyc(?) = body.body_list->val(2,1);
rc->bodyc(8) = body.body_list->val(2,2):
rc->bodyc(9) = body.body_list->val{3,0):
re->bodyc(10) . _list->val(3,1):
re->bodyc{11) . 11-t->v¢1(3 2);

re->bodye [12)
re->bodyc (13)
re->bodycl14)
rc->bodye[15)
re->bodyc (16)
re~->bodye (17}
re->bodyc (18)
rc~>bodyc (19}
rc->bodyc [20])

11-t->vll|4.0).
ltct->v.1(4 1
11.:->v31(4 2):
11.t->v‘1(5 0:
11:t->vnl(5.l):
11.t~>v01(5 2):
1£-t~>vll(‘ 0):
llat->v01(6.l).
ll.t->val(‘ 2);

$REEERIEERACS
zzmzmzs

// prints out body coordinates

printf ("body center 33f , V3f , $3f \n",rc->bodycl0}, rc->bodycil],
re->bodyc(2)):

printf("body pt 1 83f, V3f, 3f \n", rc->bodyci{d), rc->bodyc(4],
re->bodyci5});

printf ("body pt 2 $3f, 3L, A3f \n", rc->bodyc(6), rc->bedyc(7],
re~>bodyc(8l);

printf{"body pt 3 3f, A3f, $3f \n", rc->bodyc($], rc->bodyc(10],
rc->bodyc(11])

printf (“body pt 4 3£, 83f, $3f \n",rc->bodyc(12), rc->bodyc(13],
re->bodyc(14});

printf("body pt 5 A3f, A3f, 83f \n", rc->bodyc{15),rc->bodyc(16],
re->bodyc(17));

printf ("body pt ¢ V3£, \3f, $3f \n\n", rc->bodyc(18), rc->bodyc(19],
re->bodyc(20])

// joint one leg coordinates: [0)ex [1]ey [2)=2
rc->leglc{0) = legl.1link0->H_matrix->vel(0,d);
rc->leg2c (0] = leg2. 1ink0->H 1 _matrix->vel(0,3);
re->leg3c{0]) = legld.link0->H -otrix->vnl(0 3
re->legéct0) = 1.ql.11nk0->n matrin->vel(0,3);
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re->legSc(0)
re~>legée{0]
re~>leglecll)
re->leg2cl1)
rc->leglc(1)
re=->legdc(l)
re=->legSe(1)
re~>legécl(l)

re~>leglci2]
re->leg2e(2)
re->leglec(2)
re->legéc(2]
rc->legSel2)
rc=->legbe2)

= legS.1link0->H_matrix->val(0,3);
= leg6.link0->R_matrix->val(0,3);
* logl.link0->N_metriz->wval(l,3);
* 1092.1ink0->n_wetriz->ve1(1,3);
= leg3.1link0->N_metrix->val(l,3):
= leg4.link0->A_matrix->valtl,3!;
= leg5.link0->R_metrix->val(l,3):
= leg6.1link0->N _matriz->val(l, 3);

= legl.link0~->K_matriz->val(2,3);
= 1092.1ink1->N_matrix->val(2,3);
= leg3.linki->H matrix->val(2,3);
= legd.linki~>N_metrix->val(2,3):
= leg5.1linkl->N_matrix->vel(2,3):
= legé.linkl->H matriz->val(2,3);

// joint 2 x,y,z coordinates (3)ex [4)ey [S)=z

re->leglc{3)
re->leg2e(3)
re->leglc(3)
re->legécid]
re->leg5ci3)
re~>legéc(3)
re->leglcid)
re~>leg2c(4}
zc~>legic(4)
re->legdcl4)
re~->legSc (4]}
re~>legéc(4)

re~>leglc(S]
re~->leg2e(S)
re~>legle(S)
rc~>legéc(5]
re~->legde(S)
re->legbe (5]

= legl.linkl->H_matrix->val(0,3):
= leg2.linki1->H_matrix->val(0,3);
= legl.linkl->H_metrix->val(0,3)
= leg4.linkl->H_metrix->val(0,3)
= leg5.1inki->H_matrix->val(0,3)
= leg6.link1~->H_matrix->vsl(0,3)
= legl.linkl->H_matrix->val(l,3)
= 10g2.1inki->H_matrix->vel(1,3)
)
)
)
)

e v %

= leg3.linkl->R matrix->vel(1,3);
= log4.linkl~>N_matrix->val(l,3):;
= 1095.1ink1->H_matrix->val(l,3):
= 1e96.1ink1->R_matrix->vel(1,3);
= legl.linkl->R metrix->val(2,3)
= leg2.1inkl->R_matrix->val(2,3)
= 1eg3.1linkl->H_matrix->val(2,3)
= leg4.linkl->N_matrix->val(2,3)
= 1095.14nki->H_metrix->val (2,3}
= leg6.linkl->H matrix->val(2,3)

H
H
H
:
:
H

// 3oint motion_limit_flag

re->motion_limit_flagf{0) =legl.linki->GetMotionLimitFlagl);
re~->motion_limit_flag(3] = leg2.linkl->GetMotionlLimitFlag():
re~>motion_limit_flag{6) = leg3.linkl->GetMotionLimitFlag():

re->motion_limit_f1sg{9) = leg4.linkl->GetMotionLimitFlag();

re->motion_limit flag{l2] = legS.linkl->GetMotionLimitFlag():

re->motion_limit_flag(l1S) = leg6.linkl->GetMotionLimitFlag();

// joint 3 xyz coordinates (6)=x [7)=y [8]=2

re->leglc (6] = legl.link2->H_matrix->val(0,3);
rc->1eg2c{6) = leg2.link2->H_matrix->val(0,3);
re->leg3c(6) = leg3.link2->H_matrix->val(0,3);
re->legdci{6) = legd.link2->K matrix->vel(0,3);
rc->legSc{6) = 1e9S5.1ink2->H _matrix->val(0.3);
rc->legéc(6) = legé.link2->N_matrix->vsl(0,3);
re->legle{?) = legl.link2->K_metrin->val(l,3);
ze->leg2c(?]) = leg2.1ink2->N_matrix~>vel(l,3);
re->leg3c(7) = leg)d.link2->K_matrin->val(l,3);
re->legdc(7) = legd.link2->N_matrix->val(l,3):
re->1eg5¢{7) ~ leg$5.link2->A_matrin->val(l,d);
rc->legéc(?) = legé.link2->N_matrin->val(l,d);
rc->leglc{f) = legl.link2->R_matrix->val(2,3);
re~->leg2c (0] = leg2.1link2->H_metrix->val(2,3);
re->leglc(0) = 1e93.1ink2->N_matrin->val(2,3);
rc=>legdc(8) = leg4.link2->R_metrix->vali2, M
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re->leg5c(8) = legS.link2->R matrix->vali2, 3);
rc=>legéc (] = legé.link2->t matrix->val(2,3);

/7 joint 3 motion_limit_flag

ze=->motion_limit_flag(l) = legl.link2->GetMotionLimitFlag():
rc->motion_limit_flag{d) = leg2.link2->GetMotionLimitFlag():
re->motion_limit_f£lag(?7] = 1eg3.1ink2->GetMotionlLimitFlagl):
re->motion_limit_£leg{10] = leg4.link2->GetMotionLimitFlag():
re->motion_limit_flag(l3) = legS.link2->GetMotionLimitrlag():
re~>motion_limit_flag{16) = legé.link2->GetMotionLimitPlag():

// joint ¢ xyz
rc->leglcl9)
re->leg2c(y)
re=->legici9)
re~>legdc(9)
re->legle (9]
rc->legéc(y]

coordinates [S)=x {10)=y {1l1)w=g
legl.link3=->N matrix->vel(0,3);
1092.14nk3->N_metrix->val(0,3):
log3.link3->N _matrix->val(0,3):
log4.link3->H_matrix->val(0,3);
1legS.1ink3->R_matrix->val(0,3);
legé.link3->R satrix->val(0,3);

re->leglc(10) = legl.link3->A_matrix->val(l,3):

rc->leg2c{10)

1eg2.14ink3->0_matzrix->val(1,3):

re->leglic(10) = legd.link3->8 matzix->val(l,3):
rc->legéc(10) = legd.link3->H _matriz->val(l,d);
re->1eg5c{10] = leg5.1link3->H_matrix->val(l,3):
re->legéc{10) = legé.link3->H_mavrixz->val(l,3):
re~>legic(ll] « legl.link3->H_matrix->val(2,3):
rc->leg2clill]) = 1092.1ink3->H_matrix~>vel(2,3):
re~>leg3iclll) = leg3.link3->H_matrix->wvsl(2,3):
re->legéc(1il]) = legd.link3->H_setrix->val(2,3);
re=>legScill} = leg$5.link3->N_metrix->wvall2,d);

re~>legécill] = leg6.1link3~>B_metrix->val(2, 3);

// 3oint 3 motion_limit_flag
rc->motion_limic flag(2) =« legl.link3d->GetMotionLimitFlagil):
rc->motion_limit_flag(S) « leg2.link3->GetMotionLimitFlag():
ze->motion_limit_£lagid) = 1e¢9¢3.link3->GetMotionLimitFlag():
re->motion_limit_flaglll) = leg4.link3l->GetMotionLimitFlag():
rc->motion_limit_flag(14) = leg5.1ink3->GetMotionLimitFlag();
re->motion_limit _flag{l?) = legé.link3->GetMotionLimitFlag():

// test for supporting legs and sdjusting leg_support_flag
if (febs(rc->leglicill]) >= GROUNDELEVATION) legl.SetlagSupportFlagll);
slse legl.SetlegSupportFlag(o0);
if (fsbe(zc->leg2cill])) >~ GROUNDELEVATION) leg2.SetLegSupportFlag(l):
else leg2.SetlegSupportFlagi0):
it (febs(rc~>leg3c(11]) >= GROUNDELEVATION) leg3.SetlegSupportFlag(l):;
else legl.SetlegSupportflag(0):
if (febs(rc->legic(1l])) >= GROUNDELEVATION) legd.SetlegSupportFleg(l):
slse legd.SetlegSupportFlagild);
if (fabs(rc->legSc(l1l)]) >= GROUNDELEVATION) legS.SetlegSupportFlag(l):
else leg$S.SetlegSupportflag(0):
it (febs(xc->legécill])) >= GROUNDELEVATION) legé.setlegSupportFlag(l):
else legé.SetlegSupportflag(0):

into re

legl .GetLegSupportFlag(}):
1092 .GetlegSupportFlagi{):
leg).GetLegSupportFlag();
leg4 .GetLegSupportFlagl):
leg5.GetLegSupportFlagl);
legé .GetLegSupportFlag():

// places ley_support_flasg
rc->leg_support_£lagi0)}
rc->leg_support_flagil}
re->leg_support_flagl(2)
re->leg_support_flagi3)
rc->leg_support_flagld)

rc->leg_support_flag($)

// prints body and leg xy: coordinates
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int row, col;
printf(“legl leg2\n®);
for ( row = 1; row<$; rowsd)

{

for (col = 3; col>0; col--)

printf(=s¢6.4f ", rc->leglc(3 * row - col)):
printg (™ i K
for (col = 3; col>D; col--)
printf ("86.4f ", re->leg2c[3 * row - col});

printt ("\n®);

)
printf ("\n");
printf (“legld legd\n®);
fox (row = 1; row<5; rows+)

{

for (col = 3;c0l>0; col--)

printf("N6. 4L ", rc=>legic(3 * row - col});
printt (® ¥
for ( col = 3; col>Q; col-~}
printf (=\6. 4L *,zc->legdc|(3 * row ~- col)):
printf ("\n"):

)
printf("\n");
printf("leg$ legé\n=):
for (row = 1; row<$; rows+)
i
for (col = 3; col>0: col~~-)
printf (“86. 4f ®,ze=->1e09S5c{3 * row ~ col)):
printf (" et
for (col « 3I; col>0: col-~)
printf("86. 4f ®,re->legéc{3 * row - col}):
printt ("\n%);

)
printt(®\n");

return *re;
1

// L2222 R 2 22 2 A RS RS A R I AR R 2222222222 X 22222222 2)

// FUNCTION: File_Use

// PURPOSE: reads desired leg changes from a file
// INPUT: reads from file:

77 format: legl, deltal, delta2, deltsl
// OUTPUT: calculates new leg/link coordinates

,/ PG GNP RANOISRCAR O AR RN REENC N RIS TR PP E R ENER PO R RReadand

Passing_Items File Use(FILE *ifp, AQuarobotBody &body,Aqualeg élegl,
Aqualeg tleg2, Aqualeg tleqgl, Aqusleg &tlegd, Aqualeg &leg5,
Aqusleg tlegé)

Passing_Items °*pass;
pass = new Passing_ Items;
facenf (ifp, "Vd t1f S1f W1f R1f 1€ \1f",tpass->body, spass->dell,
tpass->del2, spass->dell, ipass->deld, épans->dels, spass->deld) ;
it (pass->legnum < 9)
I

body .MoveIncremental (pass->dell, pass->del2,pass->dell,pass->deld,
pass->delS, pass->delé);
fscanf (1fp, "%d M1f S1f A1f",Cpass->legnum, spass->dell, tpass->del?2,
tpass->deld);
legl.MoveIncremental (body, pass->dell,pass->del2,pass->deld);
fscanf (1fp, “%d S1f 31f S1f",cpass->legnum, ¢pass->dell, tpass->del2,
spans->deld);
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leg2.Movelncremental (body,pass->dell, pass->del2, pass->dell);
facanf (1fp, "V%d V1f V1L S1f™, épase->legnum, épass~>dell, tpass->del?,
Lpass-~>delld);
leg3.MoveIncremental (body,pass->dell, pass->del2, pess->delld);
fecant (i£p, "Nd S1f V1f \1f", spase->legnum, tpaas->dell, spass->del?,
spass~->delld);
leg4 .Movelncremental (body, pass->dell, pass~>del2, pass~>delld);
facanf (1fp,"%d %1t M1f \1f",épass->legnum, bpass->dell, tpass->del2,
spass~->delld);
legS .Movelncremental (body, pass->dell,pass->del2, psss~>deld);
fscanf (ifp, "\d V1f V1t V1f~, &pess->legnum, ipass->dell, ipass->del2,
spass~->deld);
legé .MovelIncremental (body, pass->dell, pass->del2, psss~>deld);
facanf {ifp,"\d S1f N1f V1™, ipass->legnum, bpass->dell, spass->del2,
tpass->deld);
it (psss->legnum == D)
{ pass->dell = 0.0;
pass->dal2 = 0.0;
pass->deld ~ 0.0;
} o
N
return *pass;
)

// LASAR AR AL R S A AR A 2 AR R 2 A AT A A A R I R I R SRR SR R Y XS
/! TILENAME: TrxansferToGait
/1 PURPOSE: pleces the body center and leg Cartesian coordinstes

14 in a Next_Motion structure for gait algorithm use
// RGN AARER SO UN NGB VR ARG A O RN RO RS RO PR N A RO R AN G IR NN R OO RO CRATRRRNORNES

Next _Motion TransferToGait (Return_Coordinates icoord, AquarobotBody tbody)
{

Next _Motion *temp:

temp = new Next_Motion;

temp->body, center_cooxrd|[3) = coord.bodycl0): //x
temp->body_center_coordl4] = coord.bodyclil): //y
temp->body_ _center_coord(5) = coord.bodyci{2): //z

temp->foot 1_coord(0] = coord.leglc(9); Iix
temp->foot 1_coord(l] = cooxd.leglc(10}): iy
temp->foot 1_coord(2) = cooxd.leglic[11): //z
temp->foot 2 coord{0] = coord.leg2c(9); /i
temp->foot_2 coord(l) = coord.leg2c(10); Iy
temp->foot _2 coord(2] = coord.leg2c(11): /e
temp->foot_3_coord|0]) = coord.leg3c{9); /7=
temp->foot_3_coord(l) = coord.leglc{10); 1"’y
temp-~>foot_3_coord|2) = coord.leglciil): Vil
temp->foot _4_coord[0) =~ coord.legdc(9); //x
temp~>foot_4_coord(l) = coord.legdc|10); Iy
temp~>foot_4_coord(2) = coord.legic(1l): /e
temp->foot_5_coordj0) = coord.leg5c(9): /%
temp~>foot_5_coord{l) = coord.leg5c(10); Iy
temp->foot_S_coord(2] ~ cocrd.leg5ci11]): /2
temp->foot_6_coord({0) = coord.legbc(9): //=
temp->foot_6_coord({1l] = coord.legéc{10]; /Iy
temp->foot_6_coord(2) = coord.legéc{ll):; 12

// current body elevation
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temp->body_center_coord{l) = -1. * body.H matrix->val(2,0):

// current body agimuth
temp->body_center_coord(0] =asin(body.H _matrix->wal(1,0) /
cos (temp->body_center_coord(1]));

// current body roll
temp->body_center_coord(2)=ssin (body.H_matrix->val(2,1) /
cos (temp->body_center_coord(1}));

// joint_limit_flag
for (int i=0: i<17; i+4)
temp->joint_limit_flag(i) = coord.motion limit_flag(i);

// leg_contact_flag
for (int 3=0; 3<7; J+4)
temp->leg_contact_flag(j] = coord.leg_support_flagli):

return *temp;
)

// AR A AT R XA A A R a2 F T I I Z Y R Y T T
// FUNCTION:gait algorithm

// PURPOSE: to provide a temporary gait function for

// testing purposes

// LAA AL A A2 A R A A A 2 A L A A I R L I e e P P YT Y T

Next_Motion GaitAlgorithm (Next_Motion &in)
{

Next_Motion *temp:

temp = new Next_Motion:

for (int 1 « 0: i<6; i++4)
temp->bodymotion({]) = 0.0;

for (i = 0; 1<3; i+#)

{ temp->legimotion(i]) = 0.0:
temp->leg2motion(i} = 0.0;
temp->leg3motionii) = 0.0;
temp->legdmotion{i) = 0.0:
temp~->legSmotion(i) = 0.0:
temp->legémotion(i] = 0.0:

}:
// movement desired

return *temp:
}
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[/ AR N RN ENERRRRPRRRRATARARRAPIRNRN SR NE RN R ARSI RItRtNRaS

// FILENAME: Link.H
// PURPOSE: Daclarations for class Link

// AUTHOR: § I Davidson
// DATE: 18 Sept 92
// COMMENTS: Definition of Link class

/I ARERNERAG G AR AR ARANROORNONRNSRRERGCERbQedddddaRdndiNAtRASORS

#1fndef H_LINK
#define H_LINK

#include <atdio.h>
dinclude <math.h>
#include "RigidbBody.R”
finclude "MatrixMy.H"

class Link: public RigidBody

{

private:

int motion_limit_flag:

double link_length;

double twist_angle:

double inboard_ joint_angle:
double inboard joint_displacement:
double inboard link;

double min_joint_angle; // rotary link

double max_joint_angle; // rotary link

public:

Link ( int mlf, double 11, double ta, double ija, double ijd, double i1,

double min_ja, double max_ja }:

~Link();

void Rotate(matrix®, double):

void

RotateLink (matrix®, double):

int GetMotionLimitFlag() {return motion_limit_ flag:)

double GetLinkLength() (return link length:}

double GetTwistAngle() (return twist_sngle;)

double GetlnboardJointAngle() {return inboard_ joint_angle;}

double GetInboardJointDisplacement ()} (return inboard joint_displacement:)
double GetInboardlLink() {return inboard link:|}

double GetMinJointAngle() {return min_joint_sngle:}

double GetMaxJointAngle() {return max_joint_angle:|

void
void
void
void
void
void
void
void

i

SetMotionLimitFlag(int a) {(motion_limit_flag = a:)

SetLinkLength (double a) {link_length = a:)

SetTwistAngle (double a) I[twist_sngle = a:)

Set InboardJointAngle (double a) {inboard_joint_sngle = a:)

Set InboardJointDisplacement (double a) {(inboard_joint_displacement =a:)
SetInboardLink (double 8) {inboard link = a;}

SetMinJointAngle (double a) (min_joint_angle = a:)

SetMaxJointAngle (double a) (max_Joint_angle = a:)

fendit
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/, SRR ENNE DR O Rr RS TRRNEPARNEN AR RR P RRARIRNNRANIERS
// FILENAME: Link.C

/! PURPOSE: Iwplemsntation of class Link

// CONTAINS: UpdateAMatrix ()

/! Rotate (double angle)

i RotatelLink {(double angle)

// AUTHOR: S L Davidson

// DATE: 18Sept 92

[/ #9000 00NNttt RN et s e st ta It R Rd Rt NettRstat RNt Ry

finclude “Link.H"

const int True = 1;
const int False = 0:

// BEPNBARR NP OV RNSRN RN PN ERE R NANR NGOG RGO RCEeCAQaddRted et
// FUNCTION: Link

// PURPOSE: Constructor for Link

// RETURNS: a 1ink with values

// L2 X Y A R N e R R 2 R R4 222222 X2 2222222222 2 R X

Link::Link ( int mlf, double 11, double ta, double ija, double ijd, double il,
double min_i4a, double max_js )
{
motion limit_flag = mif;
link_length = 11;
twist_angle ~ ta:
inboerd_joint_angle =~ ija:
inboard_joint_displacement = ijd:
inboard_link = il:
min_joint_angle = min_ja:
max_joint_angle = max_ja:

H_matrix->UpdateTMatrix(ija,ta,11,13d):
)

/] S0EPRCIN RGN L PPN RRNEGRIRANLENERNRRIPRORETRECERERASOLY

// FUNCTION: ~Link
// PURPOSE: destructor for Link class

]! C0P0Rceteetets et eintantetorsettenedtiectotusitatitone

Link::~Link ()
1

delete node_list;
1

J] 90900080 0000000 000000ttt st ettt Nesetitatdotititetinns

// FUNCTION: Rotate

/{ PURPOSE: rotates a Link by changing the T Matrix

/77 by the inboard joint angle desired

// RETURNS: an updated T _matrix within the Link object

/] 204000000000 0008000008 0000080 00RRRR0teentetRintnsdRten

volid Link::Rotate (matrix *mat, double angle)
{
SetinbosrdlointAngle (angle);

T_matrix->UpdsteTMatrix (Get InboardJointAngle(),GetTwistAnglel),
GetLinklength(),Get InboardJointDisplacement ()):
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/1
1

the "mat” ia the inboard link’s T matrix (or the body’s
T matrix for the inboard joint

*H_matrix = *mat * *T matrix;

}

//
/"
1/
1
/7
1
/7
1
1/

LAXI AR AR TSRS AR 22 A2 222 RS2 22222222222 22222}

FUNCTION: Rotetelink
PURPOSE: determines if the rotation is within physical
joint constraints. 1f outaide the workspace the min
or max limit applicable is used,
: this function calls the Rotate function
RETURNS: sets range of inboard joint angle if desired is

outside physical constraints
L2 A A R R R I R R R I R R I RS SRR S22 3

void Link::RotstelLink(matrix *mat, double angle)

{
double tester: // temporary variable
tester ~ GetMinJointAngle():
if (angle < tester)
{ angle = tester:
SetMotionLimitFlag(l);
}

tester = GetMaxJointAngle(;:
if (angle > tester)
{ angle = tester:
SetMotionLimitFlag(l):
)

Rotate (mat, angle}:
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AR AR R R AR R I R Y )

7/ FILENAME- LinkC.H

// PURPOSE: Deaclarations for class Link0
/7 o

// AUTHOR: S L Davidson

// DATE: 17 Sept 92

!/ COMMENTS:

// RAP P AR ARG AN R ACCANPARAN AN A AR RGP ARR R P AR AAAARR R ERROAARNARE N

¢ifndef N_LINKO
¢define H_LINKO

tinclude “Link H~

class Link0 : public Link
{

private:
public:

LinkO () :

)
tondif

11
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Liake.C 1

/, RSN NN RN RRR0RNRORGARGRNROR AR RRERNORRSRRNRR¢sdRRResavwertedasese
// TILENAME: Link0.C
// PURPOSE: Declarations for cless Link0

// AUTHOR: 8 L Davidson
// DATE: 17 Sept 92
// COMMENTS:

/] 00000000008ttt neeestttttNetetettecerneertitinestttecntenses
#include “"Link0.m*

Link0::LinkO() : Link ( O, 37.3, 0.0, 0.0, 0.0, -1.0,
-360.0,360.0)
{
node_list->val(0,3) =1.; node_list->val(l,3) =1.;
node_list->vel(2,0) =37.5; node_list->val(2,3) = 1.;
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,I CECRNC LR AVERNEANORGCRCOERRRNORIRNNOGROOREENOOORNGONRRNORRNCARES

// PILEMAME: Linkl.®
// PURPOSE: Declarations for class Link0d

// AUTHOR: 8 L Davidson

// DATE: 17 Sept 82
/7 COMMENTS:

,/ RN RENCCCOORRNCNNEE RO RPN RARNRERNERDO N RGP RNNPONROROERNNROACSIRNRORS

#ifndef H_LINK1
#detine H_LINK1

#include "Link.m*

class Linkl : public Link
{

private:

public:
Link1 ()
)2

fendif
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L 21

Li
{

NN E VR R AR R E SR NON RO AR SRR OCROCENENE NN ORRENCCRERANANROBESOOOPRS

FILENZME: Linkl.C
PURPOSE: Declarations for class Link0

AUTHOR: 8 L Davidson
DATE: 17 Sept 92
COMMENTS :

R RVONR R QO RN ENSPRR RN AR N ARG P RNN AN NENRNCNONN AN T RO OO RROOEROIROS

nclude "Linkl.R*

nkl::Link1l() : Link ( O, 20.0, -90.0, 66.4, 0.0, 0,~106.6,73.0)
node_list = new matrix(4,4,0.0);

node_list~>val(0,3) =1.;

node_list->val(l,3) =1.;

node_list->val(2,0) = 20.0;

node_list->val(2,3) = 1.;

T_matrix = new matrix(4,4,0.0);
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,I RGP E R R RN RN AN R E RN SRR AR A RO NS RO RO RN NN AR PO RN E R R RN CRANBNAN GO RSR

// FILENAME: Link2.R
// PURPOSE: Declarations for class Link0

// AUTHOR: $ L Davidson
// DATE: 17 Sept 92
// COMMENTS:

’/ LAAA A LI T2 P 2 e Y Y

¢ifndet H_LINK2
#define H_LINK2

finclude "Link.R"

class Link2 : public Link
t

private.

public:

Link2();
}:
dendif
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// PN ER P NN RS AR PR SR AS SR ERARR R RN R PG A NN SRR IO R RO OER NP I RSO NORS
// FILERAME: Link2.C
// PURPOSE: Declarxstions for class Link0

// AUTHOR: S L Dasvidson
// DATE: 17 Sept 92
// COMMENTS:

/, (22 222 XTI YIS ISR ISR Y YYRSARAR 2RSS AR A2 222222 222 2 ) 3 )
#include "Link2.RH"

Link2::Link2({) : Link ( O, S0.0, 0.0, -156.4, 0.0, 1.0, -156.4, 23.6)
{
node_list = new matrix(4,4,0.0);
node_list->val(0,3) =1.; node_list->val(l,3) =1.;
node_list->val(2,0) =50.; node_ list->val(2,3) = 1.:

T_matrix = new matrix(4,4,0.0):
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// '...'...""'..".t.'......Q.I.'.....'.""'Q.."..'.".'.'.'

// TILENAME: Link3.W '

// PURPOSE: Declarations for class Link0
/7

// AUTROR: § L Davidson

// DATE: 17 Sept 92

// commwrs:

// ."..0...'........'.'.0.......'."'..'...'....‘.O...'.."‘."

#1fndef N_LINK3
fdetine ¥_LINK3

#include “Link.H*
class Linkd : public Link
{
private:
public:
Link3();
}:

fenair
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// RPN NORNE OGS SRR ARNRC R RNERBEARNAP RGN RSN OERORRERARRTRROEORARTRS
// TILENAME: Link3}.C

// PURPOSE: Declarstions for class Link0

/1

// AUTROR: 8 L Davidson

// DATE: 17 Sept 92

// COMMENTS:

,/ SOSRNGAPENORR QAN RENCRARSRE ARG ACRERNOOPRERRRESIRNRERRORRREN

#include "Link3.H"

Link3::Link3() : Link ( O, 100.0, 0.0,0.0, 0.0, 2.0, -360.0,360.0)

{
node_list = new matrix(4,4,0.0);
node_list->val(0,3) =1.; node_list->val(l,3) =1.;
node_list->vel(2,0) =100.; node_list->val(2,d = 1.;

T matrix = nev matrix{4,4,0.0);
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// NP GGG EPRERNN B R GRS C PR A ORAONNRCEORRRR NN QNGRS RORORNRGAS

// FILENMAME: MatrizMy.H
// PURPOSE: To provide for » matrix class to accomplish
some necessary robotic and kinesmatic needs.
// AUTHOR: S L Davidson
// DATE: 29 Oct 92

// COMMENTS: DHMatrix, Homogeneous Transform, and
1/ TransformList are included

// CRCEDEANSORRRCPRR GO N RO ONRRRO AP RERELDNGP RN RORRARERRS

#ifndef H_MATRIX
ddefine H_MATRIX

const double deg_to_rad = .017453292519943295;

class matrix

{

struct matrep

{

double **m;
int £, ¢, n;

| A -H

public:

matrix{const matrixé x);
~matrix():

matrix();

matrix(int, int, double ):
matrix operator=(const matrixt rval):
matrix operator+{const matrixé rval):
matrix operator® (const matrixé rval);

matrix
double

operstor* (double);
& val{int row, int col)const:

void print{);

int rows() const {return p->r;});
int cols() const {return p->c¢;):

// Craig method used
matrix & HomogeneousTransform{double,double,doubles,double,double,double):

matrix § DHMatrix(double,

7/
/f

X
1/

double, double,double,

1

copy initislizer
class destructor
class constructor
class constructor

spot value
prints matrix

returns number of rows
returns number of columns

double, double):

matrix & UpdateTMatrix(double, double, double, double):

matrix & TranstormList (matrixé, matrixs);

}:
fendif

123




Matrviasly € 1

/7
/
/1
/7
Il/
77
/7
24

SR OGN NG PO ANS RN AN AL RN CNL ORI SRR RANAORRRRRAY

FILENAME : MatrixMy.C

PURFOSE: Implemantation of MatrixMy clasas

CONTAINS - functions which operate upon matrix
type variables

AUTHOR: § L Davidson

DATE: 20 Feb 93

: b
AL AR R A AE IR R RSN AR RN ARA AN ANPEAA PRI RO ARNPAOEAARNAERNRAO N

finclude <;tdio.h>
Yinclude <atdlib. h>
tinclude <atring.h>
tinclude <math.h>
tinclude "MatriuMy.H"
finclude "Aqualeg.H"

CEARN P A C R R AR R R RS R AR AP R ARNNR S P ANA AP RGO N R AP RN ORD S
FUNCTION: matrix()
PURPOSE: constructor of 2 matrix type

creates 2 4 by 4 matrix (by default)
RETURNS: » matrix with 0.0 in all spaces

// [E R A R E R R R AR R R 2 2 X R N R R R R R A RN RN RN N R N N R E R NN R N Y
matyi{x: :matrix()
{
P = new matrep:; // pointer to matrix structure
p->r ~ 4; // r is aumber of rows
p->c = 4: // ¢ is number of columns
p->m = new double *[4); // m is the value array
// m consists of a 4 pointer array
int x:

for (x =0; x<&; x++)

p-

p->m(x) ~ new double[41}: // produces an Srray.of four
o // items per array pointer
>n o= 1;

int §:
for (int i=0; 1<4; {+4)

for (3=0; jc4: j+4)
p->m(i)()) = 0.0; // esch matrix is given the initial
// valu= of 0.0

BB 0GR SEIPRNEPRASNADEANCIONDPOEDNPPAPRAPNOPORPIRRRNORAPRRAIRANRRRNEY

FUNCTION: matrix(row, ¢ol, initval)
PURPOSE: conatructor of a matrix type
: creates a 1 by 1 matrix by default in wnich all the
item values are 0.0 or matrix sizxe and values
indiceted
RETURNSG: & matrix of siredesired with inftial values desired

CO N DD ANCRBONERBRADNIROPRORNPENCARANAEP PRGSO RNAORIPAROIRGSEARSESIAN

ratrix::matrin(int rows = 1, int col = 1, double initval = 0.)

{

p = new matrep; . // pointer to matrix structure

p->r = rows: “// t i3 number of rows

p->¢c = col; // ¢ is numbeér of columns

p-»m = newv double °*{rows); // produces the desired number
// of rows

int =:

for (x =0; we<rowa; xss)

p->mix] = new douhle(coll; // each rov ia given an array equal
// to the numher of columns desired

pean o= 1
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int 3;
for (int i=0; i<rows: i++4)
for (3=0; j<col: j+4)
p->m{i)1[j) = initval: // initializes each value to
// desired initval

| — __-—é
»

#

q

L
>

>
»

// RN RGN AR RN NN R RSO N AR AR R RN P AN RO ARG R R RO R AR R A AN RPN ORI ERERAS

// FUNCTION: matrix(matrixé) |
// PURPOSE: desp copy constructor of the matrix type i
// RETURNS: & cowplete identical copy of the matrix :

// (A S22 X2 2R 222 2 22 222 R 2222222 2222222222220 2 2 222221

matrix::macrix(const matrixé x)
{ i
X.p=>n+e; .
P = x.p:

YZARAA I T A2 S R A A R A Y I R Y A T e R R Y sy

// FUNCTION: operator=

// PURPOSE: operator overload function of the equals aign »
// : produces another matrix which points to the original

// RETURNS: copy of matrix is made in the other one

AR AL TI I A L R e I e e L

matrix metrix::operator=(const matrix¢ rval)
i
it (~=p->n == 0)

{

for (int x=0; x<rows(): x++) [ ] ‘
delete p->mx]:;

delete p->m;

delete p:

}

rval.p->n++;

P = rval.p:

return *this;

J] 8t rd R 000 Rt R NNt R ettt Rt Nee Rttt ddtedetddcansdadtsdtaey

// FUNCTION: ~matrix()
// PURPOSE: destructor of & matrix type

1/ #0000 0000000000000t ettt tNeetatieettnsteteaddsddansnseshiceens

matrix::~matrix()

it (-~p->n == 0)
\ ]
for (int =x=0; x<rows():; x++) delete p->m(x):
delete p->m;
delete p:
}
)

// AAZZ R 22 A AR R R YR R R R L P Y Y R Y PSR X X XS X TSR 2 XX XX

// TUNCTION: val(row, col} »
// PURPOSE: finds the value in a matrix given rov and column

// RETURNS: value in spot in desired row and column

// LA XA A A AR A A R A AR AR e R A E T I Y Y I Y R R I R ST Y SRR X 2 X

double ¢ matrix::val(int row, int col) const
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{
return (p->m{row]}(col));

// ERR RN RN ERR A RAC RN PR R RN R RN PR AR RSO R AR AAGC R AN RN ORNP BRI ERRdRtRdRS

// FUNCTION: operator®

// PURPOSE: operstor overload

1/ : provides multiplication of two mstrices
// RETURNS: the product of two matrices

// XX XTI YIS ST R RS RIS AR R AR AR AR 2222 RSS2 X2 2 2 2 2 22 2

matrix matrix::operator*(const matrixé arg)

i
matrix result (rows(),srg.cols{),0.0): // temporary matrix constructed

for {int row=0: row<rows{): row++)
{ int col:
for (col=0: col<arg.cols(): col++)
{
double sum=0.0;
for (int 1«0; i<cols():; i++)
sum += p->mi{row] {i) * arg.val(i,col):
result.val (row,col) = sum;
}
}
return result:;

/] SRR 0RC000000000 RN RRtANGRIRRRIRPRINR NN RRRRRRNNOIENRRANARERES

// FUNCTION: operator® (double)
// PURPOSE: operstor overload
/7 : provides multiplication of a scalar and a matrix

// RETURNS: the msatrix product
’/ (222222222212 2222222 2222222222 222X 222222222 222222222222 )

matrix matrix::operator® {double a)

{
matrix result(rows(),cola(),0.0): // temporary matrix constructed

for (int i=0; i<rows(): 1+4)
{
for (int 3=0; j<cols{): 3+4)
{ double ans:
ans = result.val(i,j) * a;
result.valii, j) = ans;
}
}
return result;
}

,/ (222 XA R AR X2 SRR XS R 2222 A2 R X2 R 22222222222 2R 22
// FUNCTION: operator+

// PURPOSE: operator overload

I/ : provides addition of two matrices

// RETURNS: the matrix sum

// [ 22 R XR R R R a2 S AR 222222222 X222 R R X222 2R 2Rty

matrix matrix::operator+(const matrixé arg)

{
matrix sum{rows(),cols(),0.0); // temporary matrix constructed

for (int i=0: i<rows({): i++)

{ int ):
for (4=0: j<colsl); 3j++)
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aum.p->m{i) [4) = p->m{1){3) + arg.valii, §):
)

return sum:;

}

// AR O AARORANLERRRANARENRANGR RGN NN E RO ROINGARRNORRRRORRR KR X 3
/7 FUNCTICN: print ()

// PURPOSE: oprints the vslues of the matrir

// RETURNS: & print out to the screen of the matrix contents

// ..i...0‘..'“'l...'.‘.'."..ﬁ‘..'.'.!.'.....".....'.’Oi"i'.

void matrix::print{)
{

for (int rows0; row<rows{); row++)
{
int col:
for (col=0; col<cols(): col++)
printf ("\6.6f ", p->m{row)(col])):
printf ("\n");
)

// R AENBANP NN P TR ENERRCR AR S CACREARNA R RANARAG R NGO RGARERERARREIARNRS

.// FUNCTION: Homogeneous Transform
// PUPPOSE: constructs s transformation matrix
// RETURNS: 2 matrix

// AR N E O R ARG RGO RNR NN ARAS RV AN G AR ARG PO RREARNNRRAP PRGN RASARRAOS

matrix & matrix::HomogeneousTransform(double azimuth,double elevation,
double roll, double x,double y, double z)
{
double spsi = sin(azimuth);
double cpai = cos(azximuth);
double ath =« sin(elevation);
double cth = cos(elevation);
double sphi = sin(roll);
double cphi = cos(roll);
val(0,0) = (cpsi * cth);

val(0,1} = ((cpsl * ath ¢ sphi) - (spail * cphi));
val{0,2) = {((cpsl *» sth * cphi) + (spai * aphi)):
val (0,3) = x: : .

val(l,0) = (apai * cth); ‘ ‘

val(1,3) = ((cpsi * cphl) + (apsi * ath * sphi));
val(l,2) = ({spaf * sth * .cphil) - {(cpsl * sphi)):
val(l,3) = y;

val(2,0) = (-sth):

val(2,1) = (eth * aphi):

val(2,2) = {(cth * cphi);

val(2,3) = x;

val(3,0) - 0.0:

val(3,1) = 0.0:

val(3,2) - 0.0;

val(3,3) = 1.0;

return *this;

/7 BORBOBGOLIEONNNODOIOOICORGOD0CEORNPOIPSICRILROIROOICINNISINOIORNS

// FUNCTION: DH Matriw
/! PURPOSE: coneatructs a DMt matrix
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// RETURNS: a matrix

// lOQ..ﬁ“.Q‘i‘.0'.#."..QQ‘..Q..‘..Q...ﬁ..hh..‘.‘.t"..."‘

matrix £ matrix::DHMatrix(double cosrota-e, double sinrotate,
double cootwist, double sintwist, double length,

double translate)

val (0,0) = cosrotate:
val(0,1) = -1 * pinrotate:;

val(0,2) = 0.0;

val{0,3) « length;

val(1,0) = sinrotste * costwist:
val(l,1) =« costwist * coarotate:
val(l,2) = ~1 * gintwiat;
val(l,3) « translate * -1 * asintwist;
val{2,0) = sintwist * sinrotate:
val(2,1) = sintwist * cosrotate:
val(2,2) = costwist:;

val({2,3) = translate * costwist;
val(3,3) = 1.0;

return *this;

// (AR AR R AR A AR AR R 2 R A A A R R R R R R R R R R R R A R AR R R RSN RE Y

// FUNCTION: Updste T Matrix

// PURPOSE: constructs a transformation matrix
124 : calls the DH matrix function

// RETURNS: & matrix

// ARG RS U RN NG R O R AR AR AN RO SO R AR O NN AR AR ARSI RN NS ANNEARE AN AR R AR ARRA RN

matrix & matrix::UpdateTMatrix(double rotate_angle,

double length, double translation)
{
rotate_angle = rotate_sngle * deg_to_rad;
twist_angle = twist_angle * deg to_rad:
double cosrotate = cos({rotate_angle);
double sinrotate = sin(rotate_angle):
double costwist = cos(twist_angle):
double pintwist = sin{tvist_sngle);

double twist angle,

DHMatrix(cosrotate, sln;otate,_costwist, sintwist, length,translation);

return *this;

// eI PRSP I AR I RA RO RNRR RN AR RS AR RRORRIRE RO PRPARRRNRNRARNRORRRRNPRARRTROS

// FUNRCTION: Transaform List

// PURPOSE: transfers coordinates to new position based uvpon H_matrix

// RETURNS: a transformed node_list as a matrix

// POONRBOORRRIRNARPRCAROINGRNRRAPBRNARRPRRRNANARARNRARACRRPARPORRGERPATRRS

matrix & matrix::TransformList (matrix 6H matrix, matrix &b)

matrix temp(4,1,0.0); // temporary matrix constructed

for (int { = 0; f<b.rows(); f+4+)
{

// tranaposes the node list so multiplication can be accomplished !

temp.val(0,0) = b.val(i,0);
temp.vali(l,0) = b.val(i, 1);
temp.vali(2,0) = b.val(i, 2);
temp.val(3,0) = b.oval(i, ¥
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/7

matrix middle = H_matrix * temp;

transposes the node_list back to original fomrm
val(i, 0) « middle.
val(i,1) «~ middle.
val(i,2) = middle.
val(i,3) = middle.

i

return *this;

val(0,0):
val(1,0);
val(2,0);
val(3,0):
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Izi GO EEEEORNERNERIEVEND LS
/! FILENAME: RigidBody.R
7/ PURPOSE: construct the superclass tor robot systems
// NUTHOR: § L Davidson

// DATE: 18 Sept 92

11/ YT DL LA A A

."'O...Q.'...O'.t..t“....'.t

“..“.'Q.'O‘."'Q..'I.'.'.....".."

9ifndet H_RIGIDBODY
¥define H_RIGIDBODY

#inclode "MatrixMy.B®

const double gravity = 32.210%;
class RigidBody

{

public:
matrix *node_list:
matrix *H_matrix , *T_matrix;

RigidBody():
~RigidbBody():

¥:
tendit
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/l L2 I T2 2222 3R SRS RS2 A2 2R 2222222222222
// FILENAME: RigidBody.C

// PURPOSE: Implemantation of class RigidBody

// CONTAINS: superclass of robot system

1 : common slots initisted

// AUTHOR: S L Davidson

// DATE: 18 Feb 93

,/ (AR I XTI 2222 123 TR ST SRS 2 2RI 2222222222 2222 2 3

#include "RigidBody.n"

,/ PERA NN AR P A O RN RO R AEERAR ARV NRE RO ARRO PR ERNP R RORARRNERS
// FUNCTION: RigidBody()

// PURPOSE: constructor of Rigid Body class

// RETURNS: produced Rigid Body class

// AARAGREN L RO RANCC RGN E P RN GO R OO R AR NN QARG ERRNRONNORTRNS

RigidBody: :RigidBody ()
{

node_list = new mstrix(4,4,0.0);

H matrix ~ nev matrix(4,4,0.0);

T_matrix = new matrix(4,4,0.0);

):

// LAAL IR A AR A 2 A A2 A 222 R R 222221222 222222 2 )

// FUNCTION: ~RigidBody()
// PURPOSE: destructor of the class

// LA R I 2 2 T2 2 2 21 2 2 R R T T Y X T PR F I TR L R I Y T2 X P R Y Y Y YT Y
RigidBody: : ~RigidBody ()
{

// delete node_list:
// delete H_wmatrix;

}
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APPENDIX C - CLOS SCRIPT AND GRAPHICS

typescript 1

Script started on Wed Mar 10 08:35:48 1993
hydrat cl

Allegro CL 4.1 [SPARC:; R1] (7/8/92 9:07)

;: Copyright Franz Inc., Berkeley, CA, USA

;: Unpublished. All rights reserved under the copyright laws
;: of the United States.

{: Restricted Rights Legend

;; Use, duplication, and disclosure by the Government are subject to

;: restrictions of Restricted Rights for Commercial Software developed
;: at private expense as specified in DOD FAR 52.227-7013 (c) (1) (ii).
;: Optimization settings: safety 1, space 1, speed 1, debug 2

:: For a complete description of all compiler switches given the current
:: optimization settings evaluate (EXPLAIN-COMPILER-SETTINGS).

USER(1): (load "load-files.cl”)

; Loading /n/aquarius/work/mcghee/aquarobot/load-files.cl.

loading /n/aquarius/work/mcghee/aquarobot/camera.cl.

f.oading /n/aquarius/work/mcghee/aquarobot/link.cl.

Loading /n/aquarius/work/mcghee/aquarobot/rigid-body.cl.

Loading /n/agquarius/work/mcghee/aquarobot/robot-kinematics.cl.
lLoading /n/squariuvs/work/mcghee/aquarobot/aqua.cl.

Loading /n/aquarius/work/mcghee/aquarobot/aqua-leg.cl.

Loading /n/aquarius/work/mcghee/aquarobot/aqua-link.cl.

e Ve we w4 %e e

T
USER(2): (aqua-picture)

NIl

USER(3): (setf move-list *((0 0 0 0 0 0) (C 0 Oy 96 0 O0) (.1 .2 .3) (0 O O)
(00 0) (00 0)))

((0 00 0O0O0) (0 0O0) (00 0) (0.1 0.20.3) (00¢C; (00 O0) (OO0 0))
USER(4): (move-incremental aqua-1 move-1list)

T

USFER{5): (new-picture)

NIL

USER(6): (exit)

; killing "Default Window Stream Event Handler”
; killing "%X11 event dispatcher”

; killing "Initial Lisp Listener”

; Exiting Lisp

hydeat exit

hydra%

script done on Wed Mar 10 08:50:16 1993
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